122,730 research outputs found

    An evaluation framework to drive future evolution of a research prototype

    Get PDF
    The Open Source Component Artefact Repository (OSCAR) requires evaluation to confirm its suitability as a development environment for distributed software engineers. The evaluation will take note of several factors including usability of OSCAR as a stand-alone system, scalability and maintainability of the system and novel features not provided by existing artefact management systems. Additionally, the evaluation design attempts to address some of the omissions (due to time constraints) from the industrial partner evaluations. This evaluation is intended to be a prelude to the evaluation of the awareness support being added to OSCAR; thus establishing a baseline to which the effects of awareness support may be compared

    What is Usability? A Characterization based on ISO 9241-11 and ISO/IEC 25010

    Get PDF
    According to Brooke* "Usability does not exist in any absolute sense; it can only be defined with reference to particular contexts." That is, one cannot speak of usability without specifying what that particular usability is characterized by. Driven by the feedback of a reviewer at an international conference, I explore in which way one can precisely specify the kind of usability they are investigating in a given setting. Finally, I come up with a formalism that defines usability as a quintuple comprising the elements level of usability metrics, product, users, goals and context of use. Providing concrete values for these elements then constitutes the investigated type of usability. The use of this formalism is demonstrated in two case studies. * J. Brooke. SUS: A "quick and dirty" usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester, and A. L. McClelland, editors, Usability Evaluation in Industry. Taylor and Francis, 1996.Comment: Technical Report; Department of Computer Science, Technische Universit\"at Chemnitz; also available from https://www.tu-chemnitz.de/informatik/service/ib/2015.php.e

    An intelligent linked data quality dashboard

    Get PDF
    This paper describes a new intelligent, data-driven dashboard for linked data quality assessment. The development goal was to assist data quality engineers to interpret data quality problems found when evaluating a dataset us-ing a metrics-based data quality assessment. This required construction of a graph linking the problematic things identified in the data, the assessment metrics and the source data. This context and supporting user interfaces help the user to un-derstand data quality problems. An analysis widget also helped the user identify the root cause multiple problems. This supported the user in identification and prioritization of the problems that need to be fixed and to improve data quality. The dashboard was shown to be useful for users to clean data. A user evaluation was performed with both expert and novice data quality engineers

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    Drag it together with Groupie: making RDF data authoring easy and fun for anyone

    No full text
    One of the foremost challenges towards realizing a “Read-write Web of Data” [3] is making it possible for everyday computer users to easily find, manipulate, create, and publish data back to the Web so that it can be made available for others to use. However, many aspects of Linked Data make authoring and manipulation difficult for “normal” (ie non-coder) end-users. First, data can be high-dimensional, having arbitrary many properties per “instance”, and interlinked to arbitrary many other instances in a many different ways. Second, collections of Linked Data tend to be vastly more heterogeneous than in typical structured databases, where instances are kept in uniform collections (e.g., database tables). Third, while highly flexible, the problem of having all structures reduced as a graph is verbosity: even simple structures can appear complex. Finally, many of the concepts involved in linked data authoring - for example, terms used to define ontologies are highly abstract and foreign to regular citizen-users.To counter this complexity we have devised a drag-and-drop direct manipulation interface that makes authoring Linked Data easy, fun, and accessible to a wide audience. Groupie allows users to author data simply by dragging blobs representing entities into other entities to compose relationships, establishing one relational link at a time. Since the underlying representation is RDF, Groupie facilitates the inclusion of references to entities and properties defined elsewhere on the Web through integration with popular Linked Data indexing services. Finally, to make it easy for new users to build upon others’ work, Groupie provides a communal space where all data sets created by users can be shared, cloned and modified, allowing individual users to help each other model complex domains thereby leveraging collective intelligence

    Health Figures: An Open Source JavaScript Library for Health Data Visualization

    Get PDF
    The way we look at data has a great impact on how we can understand it, particularly when the data is related to health and wellness. Due to the increased use of self-tracking devices and the ongoing shift towards preventive medicine, better understanding of our health data is an important part of improving the general welfare of the citizens. Electronic Health Records, self-tracking devices and mobile applications provide a rich variety of data but it often becomes difficult to understand. We implemented the hFigures library inspired on the hGraph visualization with additional improvements. The purpose of the library is to provide a visual representation of the evolution of health measurements in a complete and useful manner. We researched the usefulness and usability of the library by building an application for health data visualization in a health coaching program. We performed a user evaluation with Heuristic Evaluation, Controlled User Testing and Usability Questionnaires. In the Heuristics Evaluation the average response was 6.3 out of 7 points and the Cognitive Walkthrough done by usability experts indicated no design or mismatch errors. In the CSUQ usability test the system obtained an average score of 6.13 out of 7, and in the ASQ usability test the overall satisfaction score was 6.64 out of 7. We developed hFigures, an open source library for visualizing a complete, accurate and normalized graphical representation of health data. The idea is based on the concept of the hGraph but it provides additional key features, including a comparison of multiple health measurements over time. We conducted a usability evaluation of the library as a key component of an application for health and wellness monitoring. The results indicate that the data visualization library was helpful in assisting users in understanding health data and its evolution over time.Comment: BMC Medical Informatics and Decision Making 16.1 (2016
    • 

    corecore