559 research outputs found

    Degradation stage classification via interpretable feature learning

    Get PDF
    Predictive maintenance (PdM) advocates for the usage of machine learning technologies to monitor asset's health conditions and plan maintenance activities accordingly. However, according to the specific degradation process, some health-related measures (e.g. temperature) may be not informative enough to reliably assess the health stage. Moreover, each measure needs to be properly treated to extract the information linked to the health stage. Those issues are usually addressed by performing a manual feature engineering, which results in high management cost and poor generalization capability of those approaches. In this work, we address this issue by coupling a health stage classifier with a feature learning mechanism. With feature learning, minimally processed data are automatically transformed into informative features. Many effective feature learning approaches are based on deep learning. With those, the features are obtained as a non-linear combination of the inputs, thus it is difficult to understand the input's contribution to the classification outcome and so the reasoning behind the model. Still, these insights are increasingly required to interpret the results and assess the reliability of the model. In this regard, we propose a feature learning approach able to (i) effectively extract high-quality features by processing different input signals, and (ii) provide useful insights about the most informative domain transformations (e.g. Fourier transform or probability density function) of the input signals (e.g. vibration or temperature). The effectiveness of the proposed approach is tested with publicly available real-world datasets about bearings' progressive deterioration and compared with the traditional feature engineering approach

    Machine Learning-based Predictive Maintenance for Optical Networks

    Get PDF
    Optical networks provide the backbone of modern telecommunications by connecting the world faster than ever before. However, such networks are susceptible to several failures (e.g., optical fiber cuts, malfunctioning optical devices), which might result in degradation in the network operation, massive data loss, and network disruption. It is challenging to accurately and quickly detect and localize such failures due to the complexity of such networks, the time required to identify the fault and pinpoint it using conventional approaches, and the lack of proactive efficient fault management mechanisms. Therefore, it is highly beneficial to perform fault management in optical communication systems in order to reduce the mean time to repair, to meet service level agreements more easily, and to enhance the network reliability. In this thesis, the aforementioned challenges and needs are tackled by investigating the use of machine learning (ML) techniques for implementing efficient proactive fault detection, diagnosis, and localization schemes for optical communication systems. In particular, the adoption of ML methods for solving the following problems is explored: - Degradation prediction of semiconductor lasers, - Lifetime (mean time to failure) prediction of semiconductor lasers, - Remaining useful life (the length of time a machine is likely to operate before it requires repair or replacement) prediction of semiconductor lasers, - Optical fiber fault detection, localization, characterization, and identification for different optical network architectures, - Anomaly detection in optical fiber monitoring. Such ML approaches outperform the conventionally employed methods for all the investigated use cases by achieving better prediction accuracy and earlier prediction or detection capability
    corecore