476 research outputs found

    Ultra-high precision grinding of BK7 glass

    Get PDF
    With the increase in the application of ultra-precision manufactured parts and the absence of much participation of researchers in ultra-high precision grinding of optical glasses which has a high rate of demand in the industries, it becomes imperative to garner a full understanding of the production of these precision optics using the above-listed technology. Single point inclined axes grinding configuration and Box-Behnken experimental design was developed and applied to the ultra-high precision grinding of BK7 glass. A high sampling acoustic emission monitoring system was implemented to monitor the process. The research tends to monitor the ultra-high precision grinding of BK7 glass using acoustic emission which has proven to be an effective sensing technique to monitor grinding processes. Response surface methodology was adopted to analyze the effect of the interaction between the machining parameters: feed, speed, depth of cut and the generated surface roughness. Furthermore, back propagation Artificial Neural Network was also implemented through careful feature extraction and selection process. The proposed models are aimed at creating a database guide to the ultra-high precision grinding of precision optics

    Precision grinding for rapid manufacturing of large optics

    Get PDF
    Large scale nuclear fusion and astronomy scientific programmes have increased the demand for large freeform mirrors and lenses. Thousands of one metre class, high quality aspherical optical components are required within the next five to ten years. Current manufacturing process chains production time need to be reduced from hundred hours to ten hours. As part of a new process chain for making large optics, an efficient low damage precision grinding process has been proposed. This grinding process aims to shorten the subsequent manufacturing operations. The BoX R grinding machine, built by Cranfield University, provides a rapid and economic solution for grinding large off-axis aspherical and free-form optical components. This thesis reports the development of a precision grinding process for rapid manufacturing of large optics using this grinding mode. Grinding process targets were; form accuracy of 1 m over 1 metre, surface roughness 150 nm (Ra) and subsurface damage below 5 m. Process time target aims to remove 1 mm thickness of material over a metre in ten hours. Grinding experiments were conducted on a 5 axes Edgetek high speed grinding machine and BoX R grinding machine. The surface characteristics obtained on optical materials (ULE, SiC and Zerodur) are investigated. Grinding machine influence on surface roughness, surface profile, subsurface damage, grinding forces and grinding power are discussed. This precision grinding process was validated on large spherical parts, 400 mm ULE and SiC parts and a 1 m Zerodur hexagonal part. A process time of ten hours was achieved using maximum removal rate of 187.5 mm 3 /s on ULE and Zerodur and 112.5 mm 3 /s on SiC. The subsurface damage distribution is shown to be "process" related and "machine dynamics" related. The research proves that a stiffer grinding machine, BoX, induces low subsurface damage depth in glass and glass ceramic.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Study of engineering surfaces using laser-scattering techniques

    Get PDF
    Surface roughness parameters are described. Various surface characterization techniques are reviewed briefly. Interaction of light with the surface is discussed. Laser-scattering methods to characterise the surface are detailed. Practical cases, where laser-scattering methods have provided useful information about surface characteristics, are illustrated

    Investigation of Material Removal Mechanism in Grinding: A Single Grit Approach

    Get PDF
    This thesis has investigated material removal mechanisms in grinding by considering single grit workpiece interaction. The investigation was performed both experimentally and using finite element simulation. Rubbing, ploughing and cutting mechanisms occurring during the grinding process were studied at the micro scale. Due to its nature the rubbing phase occurs in a very narrow region of grit-workpiece engagement and is difficult to examine under a microscope and so was investigated using FEM simulation. The ploughing mechanism was thoroughly investigated using both experimental tests and FEM simulations, and a similar trend was observed for the pile up ratio along the scratch path from the experimental tests and the FEM simulations. Ploughing and cutting mechanisms in grinding were found to be highly influenced by grit cutting edge shape, sharpness and bluntness. Cutting is the prominent mechanism when the grit cutting edge is sharp, but ploughing is more prominent when the grit cutting edge becomes flattened. In the case of multiple edges scratch formation, ploughing is dramatically increased compared to single edge scratches. Feasibility of ground surface simulation using FEM is demonstrated using multiple pass scratch formation in a cross direction. Although chip formation mechanism is developed at a relatively higher depth of cut (greater than 10 μm), at small scales down to 1 μm, FEM simulation was not a suitable method to use. To reduce the drawbacks of FEM simulation in micro scale cutting, a meshless simulation technique such as smooth particle hydrodynamics is recommended for future studies

    Development of Advanced Ceramic Manufacturing Technology

    Full text link

    Towards an automated polishing system: capturing manual polishing operations

    Get PDF
    Advancements in robotic and automation industries have influenced many manual manufacturing operations. With a great level of success, robots have taken over from man in many processes such as part manufacturing, transfer and assembly. However, in other traditionally manual operations such as polishing, automation has only partially been successful, typically limited to parts with simple geometry and low accuracy. Automated polishing systems using robots have been attempted already by a number of industrial and research groups; however, there are few examples of deploying such a system as a part of a routine production process in high-technology industries, such as aerospace. This is due to limitations in flexibility, speed of operation, and inspection processes, when compared with manual polishing processes. The need for automated polishing processes is discussed in this article and the problem with the existing system was explained to be a lack of understanding and the disconnect from manual operations. In collaboration with industrial partners, a mechatronic based data capturing device was developed to accurately capture and analyze operational variables such as force, torque, vibration, polishing pattern, and feed rates. Also reported in this article is a set of experiments carried out to identify the polishing parameters that a manual operator controls through tactile and visual sensing. The captured data is interpreted to the operators’ preferences and polishing methods and should then be included in the design of an automated polishing system. The research results reported in this article are fed back to an ongoing research project on developing an integrated robotic polishing system

    Bridging the Divide Between Iterative Optical Polishing and Automation

    Get PDF
    Several recent business reports have described the global growth in demand for optical and photonic components, paralleled by technical reports on the growing shortage of skilled manufacturing staf to meet this demand. It is remarkable that producing ultraprecision surfaces remains so dependent on people, in contrast to other sectors of the economy, e.g., car manufacturing. Clearly, training can play some role, but ultimately, only process automation can provide the solution. This paper explores why automation is a challenge and summarizes multidisciplinary work aiming to assemble the building blocks required to realize automation
    • …
    corecore