162 research outputs found

    Rule representation and management in ConceptBase.

    Get PDF

    THE DESIGN OF KNOWLEDGE-BASED SYSTEMS FOR MANAGING ILL-STRUCTURED SOFTWARE PROJECTS

    Get PDF
    Current planning and control procedures for large-scale software projects are not sufficiently equipped to deal with changing or imprecise requirements, resource breakdowns, unexpected delays, etc. We propose a solution for managing change in projects, based on a semantic model of the software design and development processes. At the heart of this technique is the formation of islands of project knowledge in a way that facilitates dealing with most design and plan revisions locally. A protocol for interactive change management is presented that advocates need-based formation of coalitions between islands as a means for graceful degradation in the place of strict hierarchical control. The results of initial empirical investigations of the usability of the approach and plans for its continuing evaluation are also reported.Information Systems Working Papers Serie

    Agent-based learning classifier systems for grid data mining

    Get PDF
    Grid Data Mining tools must be able to cope with very large, high dimensional and, frequently heterogeneous data sets that are geographically distributed and stored in different types of repositories, produced from different devices and retrieved through different protocols. This paper presents an agent-based version of a Learning Classifier System. An experimental study was conducted in a computer network in order to determine the systems’ efficiency. The results showed that the model is suitable to be applied in inherently distributed problems and is scalable, i.e., when the latency communication times are not considerable, the system obtains an interesting speedup

    Coronavirus (SARS-CoV-2) Cardiovascular Disease (CVD) Conditions Relationship in Diabetic and SCA Patients: a Review

    Get PDF
    Cardiovascular Disease (CVD), which is also known as Heart Disease has been the most common cause of death among diabetic and sickle cell anemia (SCA) patients around the world. CVD includes coronary artery disease, stroke, and peripheral artery disease while SCA includes hemolysis. These are the main types of CVD, which is similar to hypertension because of the common risk factors they have, such as obesity, arterial remodeling, abnormal cholesterol levels, etc. Diabetes and SCA belong to the largest health emergencies of the 21st century. With the high rate of people with diabetes and SCA, the rate of Cardiovascular Disease increases rapidly. The rates of CVD in high-income countries generally have low CVD because of the monitoring systems for non-communicable diseases like CVD. However, the appearance of the novel COVID-19/SARS-CoV-2 has changed the narrative. With COVID-19/SARS-CoV-2 attacking more on people with previous health conditions associated to cardiovascular conditions, the backbone of high-income nations is broken and those leaving with high immune conditions are at less risk whether in the high income or low-income environments. The objective of this research is to review the Cardiovascular Disease conditions to the novel COVID-19/SARS-CoV-2 in Diabetic and SCA patients. This is due to the prevalence of this medical situation in the developing world or low income and densely populated countries

    MOLECULAR REGULATION OF DROUGHT STRESS TOLERANCE IN SYMBIOTIC PULSES PRODUCED UNDER DROUGHT STRESS

    Get PDF
    Peas and chickpeas are the most common varieties of pulses, the leguminous crops whose nutrient-reach grains are used to nourish the world's growing population. However, due to global climate change, abiotic stresses such as drought, high temperature and salinity are increasingly hindering crop health, yield and global food security. Increasing demands for food increases the importance and urgency of understanding how microbiomes may be exploited to increase crop yields and reduce losses caused by abiotic stress. In recent two decades, modern agricultural microbiology science is applying novel approaches to overcoming abiotic stresses. Yet, there are very few detailed studies highlighting the impacts of plant-associated endophytes on plant health and development when exposed to extreme drought. In this study, a few selected fungal strains of Penicillium sp. SMCD 2206, and Paraconiothyrium sp. SMCD 2210, and bacterial strain of Streptomyces sp. SMCD 2215 endosymbionts were tested for their capacity to promote plant growth and reduce oxidative damage in tested plants grown under drought stress. A transfer of the stress tolerance from first (F1) to second (F2) generation was also tested. The study findings showed that under drought chickpea and pea F2 seeds produced from F1 inoculated (E+) with endophytes (SMCD 2206, SMCD 2210, and SMCD 2215) have high germination and better root and shoot growth compared to non-inoculated (E−) plants. Furthermore, the reactive oxygen species (ROS) level was assessed in chickpea and pea F2 seeds and found that the fungal endophytes SMCD 2206, SMCD 2210, and SMCD 2215 reduced the oxidative damage under drought conditions in F2 generation seeds produced from F1 plants inoculated (E+) with these endophytes. The assessment of the impact of fungal endophytes on antioxidant gene expression found that endosymbionts downregulate antioxidant gene expression (proline, superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD), dehydrin), indicating the significance of endophytes in stress tolerance. In addition, the quality of seeds in regard to protein content is also improved by fungal endophytes. Furthermore, the relationship between ROS level and seed germination was investigated, and found that an inverse relationship exists. Overall, the endophytic symbionts SMCD 2206, SMCD 2210, and SMCD 2215 improve germination and plant growth, while reducing oxidative damage in second generation chickpea and pea seeds under drought conditions. In addition, the endophytes pass on the stress tolerance to next generation; however, the mechanism of action remains obscure. In conclusion, endosymbionts have the potential to increase agricultural production under adverse environmental conditions. However, additional research at the molecular level is vital to understand the stress tolerance and inheritance mechanisms, and field/natural conditions are imperative to confirm the applicability of endophytes
    • …
    corecore