1,057 research outputs found

    Predictive Control of a Closed Grinding Circuit System in Cement Industry

    Get PDF
    This paper presents the development of a non-linear model predictive controller (NMPC) applied to a closed grinding circuit system in the cement industry. A Markov chain model is used to characterize the cement grinding circuit by modeling the ball mill and the centrifugal dust separator. The probability matrices of the Markovian model are obtained through a combination of comminution principles and experimental data obtained from the particle size distribution (PSD) of cement samples at specific stages of the system. The NMPC is designed as a supervisory controller in order to manage distributed controllers (DCs) installed in the process. Both the model and the controller are validated online through the implementation of the proposed approach in the supervisory control and data acquisition (SCADA) system of an industrial plant. The results show a significant improvement in the performance of the grinding circuit in comparison to the operation of the system without the proposed controller

    Singular Perturbations and Time-Scale Methods in Control Theory: Survey 1976-1982

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryJoint Services Electronics Program / N00014-79-C-0424U.S. Air Force / AFOSR 78-363

    Benelux meeting on systems and control, 23rd, March 17-19, 2004, Helvoirt, The Netherlands

    Get PDF
    Book of abstract

    A non-uniform multi-rate control strategy for a Markov chain-driven Networked Control System

    Full text link
    [EN] In this work, a non-uniform multi-rate control strategy is applied to a kind of Networked Control System (NCS) where a wireless path tracking control for an Unmanned Ground Vehicle (UGV) is carried out. The main aims of the proposed strategy are to face time-varying network-induced delays and to avoid packet disorder. A Markov chain-driven NCS scenario will be considered, where different network load situations, and consequently, different probability density functions for the network delay are assumed. In order to assure mean-square stability for the considered NCS, a decay-rate based sufficient condition is enunciated in terms of probabilistic Linear Matrix Inequalities (LMIs). Simulation results show better control performance, and more accurate path tracking, for the scheduled (delay-dependent) controller than for the non-scheduled one (i.e. the nominal controller when delays appear). Finally, the control strategy is validated on an experimental test-bed.This work was supported in part by Grants TEC2012-31506 from the Spanish Ministry of Education, DPI2011-28507-C02-01 by the Spanish Ministry of Economy, and PAID-00-12 from Technical University of Valencia (Spain). In addition, this research work has been developed as a result of a mobility stay funded by the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering (TEE Project).Cuenca Lacruz, ÁM.; Ojha, U.; Salt Llobregat, JJ.; Chow, M. (2015). A non-uniform multi-rate control strategy for a Markov chain-driven Networked Control System. Information Sciences. 321:31-47. https://doi.org/10.1016/J.INS.2015.05.035S314732

    Estimation and control of non-linear and hybrid systems with applications to air-to-air guidance

    Get PDF
    Issued as Progress report, and Final report, Project no. E-21-67

    Networked Control System Design and Parameter Estimation

    Get PDF
    Networked control systems (NCSs) are a kind of distributed control systems in which the data between control components are exchanged via communication networks. Because of the attractive advantages of NCSs such as reduced system wiring, low weight, and ease of system diagnosis and maintenance, the research on NCSs has received much attention in recent years. The first part (Chapter 2 - Chapter 4) of the thesis is devoted to designing new controllers for NCSs by incorporating the network-induced delays. The thesis also conducts research on filtering of multirate systems and identification of Hammerstein systems in the second part (Chapter 5 - Chapter 6). Network-induced delays exist in both sensor-to-controller (S-C) and controller-to-actuator (C-A) links. A novel two-mode-dependent control scheme is proposed, in which the to-be-designed controller depends on both S-C and C-A delays. The resulting closed-loop system is a special jump linear system. Then, the conditions for stochastic stability are obtained in terms of a set of linear matrix inequalities (LMIs) with nonconvex constraints, which can be efficiently solved by a sequential LMI optimization algorithm. Further, the control synthesis problem for the NCSs is considered. The definitions of H₂ and H∞ norms for the special system are first proposed. Also, the plant uncertainties are considered in the design. Finally, the robust mixed H₂/H∞ control problem is solved under the framework of LMIs. To compensate for both S-C and C-A delays modeled by Markov chains, the generalized predictive control method is modified to choose certain predicted future control signal as the current control effort on the actuator node, whenever the control signal is delayed. Further, stability criteria in terms of LMIs are provided to check the system stability. The proposed method is also tested on an experimental hydraulic position control system. Multirate systems exist in many practical applications where different sampling rates co-exist in the same system. The l₂-l∞ filtering problem for multirate systems is considered in the thesis. By using the lifting technique, the system is first transformed to a linear time-invariant one, and then the filter design is formulated as an optimization problem which can be solved by using LMI techniques. Hammerstein model consists of a static nonlinear block followed in series by a linear dynamic system, which can find many applications in different areas. New switching sequences to handle the two-segment nonlinearities are proposed in this thesis. This leads to less parameters to be estimated and thus reduces the computational cost. Further, a stochastic gradient algorithm based on the idea of replacing the unmeasurable terms with their estimates is developed to identify the Hammerstein model with two-segment nonlinearities. Finally, several open problems are listed as the future research directions

    Discrete-Time Model Predictive Control

    Get PDF
    corecore