79,331 research outputs found

    Exploring the advantages of content management systems for managing engineering knowledge in product-service systems

    Get PDF
    Knowledge management has drawn great interest in manufacturing industries and related business practices. With the requirement for better managing the massive data and knowledge generated during different lifecycle stages of products, manufacturing industries are looking for effective way to acquire, save, process and share knowledge from and between different stakeholders, so as to make appropriate decisions and continuously improve business operations. Current (conventional) engineering information systems in manufacturing applications, such as Enterprise Resource Planning, Computerized Maintenance Management and Product Lifecycle Management Systems are difficult to inter-operate and integrate with each other when dealing with growing amount of data and knowledge as a product goes through its lifecycle stages. As informational and communication technologies (ICT) are being developed much faster in other sectors such as financial, business and social media, it is important to explore the potential of latest ICT tools predominantly used in those sectors for engineering applications and identify any advantages and benefits over the conventional engineering information systems. This paper presents an experiment in using an Open Source Content Management System, for the implementation of a collaborative product-service system for the planning and execution of maintenance and service operations of high-value complex numerical control machine tools in advanced manufacturing systems

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Maintenance Knowledge Management with Fusion of CMMS and CM

    Get PDF
    Abstract- Maintenance can be considered as an information, knowledge processing and management system. The management of knowledge resources in maintenance is a relatively new issue compared to Computerized Maintenance Management Systems (CMMS) and Condition Monitoring (CM) approaches and systems. Information Communication technologies (ICT) systems including CMMS, CM and enterprise administrative systems amongst others are effective in supplying data and in some cases information. In order to be effective the availability of high-quality knowledge, skills and expertise are needed for effective analysis and decision-making based on the supplied information and data. Information and data are not by themselves enough, knowledge, experience and skills are the key factors when maximizing the usability of the collected data and information. Thus, effective knowledge management (KM) is growing in importance, especially in advanced processes and management of advanced and expensive assets. Therefore efforts to successfully integrate maintenance knowledge management processes with accurate information from CMMSs and CM systems will be vital due to the increasing complexities of the overall systems. Low maintenance effectiveness costs money and resources since normal and stable production cannot be upheld and maintained over time, lowered maintenance effectiveness can have a substantial impact on the organizations ability to obtain stable flows of income and control costs in the overall process. Ineffective maintenance is often dependent on faulty decisions, mistakes due to lack of experience and lack of functional systems for effective information exchange [10]. Thus, access to knowledge, experience and skills resources in combination with functional collaboration structures can be regarded as vital components for a high maintenance effectiveness solution. Maintenance effectiveness depends in part on the quality, timeliness, accuracy and completeness of information related to machine degradation state, based on which decisions are made. Maintenance effectiveness, to a large extent, also depends on the quality of the knowledge of the managers and maintenance operators and the effectiveness of the internal & external collaborative environments. With emergence of intelligent sensors to measure and monitor the health state of the component and gradual implementation of ICT) in organizations, the conceptualization and implementation of E-Maintenance is turning into a reality. Unfortunately, even though knowledge management aspects are important in maintenance, the integration of KM aspects has still to find its place in E-Maintenance and in the overall information flows of larger-scale maintenance solutions. Nowadays, two main systems are implemented in most maintenance departments: Firstly, Computer Maintenance Management Systems (CMMS), the core of traditional maintenance record-keeping practices that often facilitate the usage of textual descriptions of faults and actions performed on an asset. Secondly, condition monitoring systems (CMS). Recently developed (CMS) are capable of directly monitoring asset components parameters; however, attempts to link observed CMMS events to CM sensor measurements have been limited in their approach and scalability. In this article we present one approach for addressing this challenge. We argue that understanding the requirements and constraints in conjunction - from maintenance, knowledge management and ICT perspectives - is necessary. We identify the issues that need be addressed for achieving successful integration of such disparate data types and processes (also integrating knowledge management into the “data types” and processes)

    Characterisation of collaborative decision making processes

    Get PDF
    This paper deals with the collaborative decision making induced or facilitated by Information and Communication Technologies (ICTs) and their impact on decisional systems. After presenting the problematic, we analyse the collaborative decision making and define the concepts related to the conditions and forms of collaborative work. Then, we explain the mechanisms of collaborative decision making with the specifications and general conditions of collaboration using the modelling formalism of the GRAI method. Each specification associated to the reorganisation of the decisional system caused by the collaboration is set to the notion of decision-making centre. Finally, we apply this approach to the e-maintenance field, strongly penetrated by the ICTs, where collaborations are usual. We show that the identified specifications allow improving the definition and the management of collaboration in e-maintenance

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    An extensible manufacturing resource model for process integration

    Get PDF
    Driven by industrial needs and enabled by process technology and information technology, enterprise integration is rapidly shifting from information integration to process integration to improve overall performance of enterprises. Traditional resource models are established based on the needs of individual applications. They cannot effectively serve process integration which needs resources to be represented in a unified, comprehensive and flexible way to meet the needs of various applications for different business processes. This paper looks into this issue and presents a configurable and extensible resource model which can be rapidly reconfigured and extended to serve for different applications. To achieve generality, the presented resource model is established from macro level and micro level. A semantic representation method is developed to improve the flexibility and extensibility of the model

    Web-based Process Planning for Machine Tool Maintenance and Services

    Get PDF
    Providing maintenance and services for high value complex products would extend manufacturers’ responsibilities and benefits to the products' whole usable life, and provide the opportunities to re-use or re-manufacture some failed parts. Sophisticated Computer Numerical Control (CNC) machine tools in modern manufacturing systems are special products in that they are also used to manufacture other products, and their operation performance directly affects the quality of the manufactured parts as well as the performance of the entire manufacturing system. To ensure CNC machine tools’ consistent performance, appropriate and efficient maintenance and services are essential and this is more challenging as technologies become more sophisticated and the environment is more dynamic. Previous research was mainly focused on maintenance strategy and maintenance scheduling. Very little effort was devoted to providing operational guidance for maintenance process execution, i.e., providing service suppliers with detailed information about resources needed for maintenance such as tooling, consumables, materials and spare parts, as well as service steps including disassembly and assembly of the serviced products. In this project, planning maintenance operation sequences, schedules and resource allocation are the three main tasks for generating final maintenance plans. This paper will present a Collaborative Maintenance Planning System (CoMPS) which will manage information and knowledge to support decision making in maintenance process planning

    Product to process lifecycle management in assembly automation systems

    Get PDF
    Presently, the automotive industry is facing enormous pressure due to global competition and ever changing legislative, economic and customer demands. Product and process development in the automotive manufacturing industry is a challenging task for many reasons. Current product life cycle management (PLM) systems tend to be product-focussed. Though, information about processes and resources are there but mostly linked to the product. Process is an important aspect, especially in assembly automation systems that link products to their manufacturing resources. This paper presents a process-centric approach to improve PLM systems in large-scale manufacturing companies, especially in the powertrain sector of the automotive industry. The idea is to integrate the information related to key engineering chains i.e. products, processes and resources based upon PLM philosophy and shift the trend of product-focussed lifecycle management to process-focussed lifecycle management, the outcome of which is the Product, Process and Resource Lifecycle Management not PLM only
    • 

    corecore