2,099,418 research outputs found

    Information Integration - the process of integration, evolution and versioning

    Get PDF
    At present, many information sources are available wherever you are. Most of the time, the information needed is spread across several of those information sources. Gathering this information is a tedious and time consuming job. Automating this process would assist the user in its task. Integration of the information sources provides a global information source with all information needed present. All of these information sources also change over time. With each change of the information source, the schema of this source can be changed as well. The data contained in the information source, however, cannot be changed every time, due to the huge amount of data that would have to be converted in order to conform to the most recent schema.\ud In this report we describe the current methods to information integration, evolution and versioning. We distinguish between integration of schemas and integration of the actual data. We also show some key issues when integrating XML data sources

    Information Space and Information Process: Genesis and Evolution

    Get PDF
    In this article,the phenomenon of “information space” and its methods ofstudy, its types, elementary structure and qualitative characteristics are discussed, the author’s definition of the concept of “information” is given, thestructure of the information process, and the phases, which are the basis forthe evolution of the information space and the universe of human activity,are considered

    Stokes-space formalism for Bragg scattering in a fiber

    Full text link
    Optical frequency conversion by four-wave mixing (Bragg scattering) in a fiber is considered. The evolution of this process can be modeled using the signal and idler amplitudes, which are complex, or Stokes-like parameters, which are real. The Stokes-space formalism allows one to visualize power and phase information simultaneously, and produces a simple evolution equation for the Stokes parameters

    A Computational Model for Quantum Measurement

    Full text link
    Is the dynamical evolution of physical systems objectively a manifestation of information processing by the universe? We find that an affirmative answer has important consequences for the measurement problem. In particular, we calculate the amount of quantum information processing involved in the evolution of physical systems, assuming a finite degree of fine-graining of Hilbert space. This assumption is shown to imply that there is a finite capacity to sustain the immense entanglement that measurement entails. When this capacity is overwhelmed, the system's unitary evolution becomes computationally unstable and the system suffers an information transition (`collapse'). Classical behaviour arises from the rapid cycles of unitary evolution and information transitions. Thus, the fine-graining of Hilbert space determines the location of the `Heisenberg cut', the mesoscopic threshold separating the microscopic, quantum system from the macroscopic, classical environment. The model can be viewed as a probablistic complement to decoherence, that completes the measurement process by turning decohered improper mixtures of states into proper mixtures. It is shown to provide a natural resolution to the measurement problem and the basis problem.Comment: 24 pages; REVTeX4; published versio
    corecore