9,685 research outputs found

    Process Dimension of Classical and Non-Commutative Processes

    Full text link
    We treat observable operator models (OOM) and their non-commutative generalisation, which we call NC-OOMs. A natural characteristic of a stochastic process in the context of classical OOM theory is the process dimension. We investigate its properties within the more general formulation, which allows to consider process dimension as a measure of complexity of non-commutative processes: We prove lower semi-continuity, and derive an ergodic decomposition formula. Further, we obtain results on the close relationship between the canonical OOM and the concept of causal states which underlies the definition of statistical complexity. In particular, the topological statistical complexity, i.e. the logarithm of the number of causal states, turns out to be an upper bound to the logarithm of process dimension.Comment: 8 page

    A constructive commutative quantum Lovasz Local Lemma, and beyond

    Get PDF
    The recently proven Quantum Lovasz Local Lemma generalises the well-known Lovasz Local Lemma. It states that, if a collection of subspace constraints are "weakly dependent", there necessarily exists a state satisfying all constraints. It implies e.g. that certain instances of the kQSAT quantum satisfiability problem are necessarily satisfiable, or that many-body systems with "not too many" interactions are always frustration-free. However, the QLLL only asserts existence; it says nothing about how to find the state. Inspired by Moser's breakthrough classical results, we present a constructive version of the QLLL in the setting of commuting constraints, proving that a simple quantum algorithm converges efficiently to the required state. In fact, we provide two different proofs, one using a novel quantum coupling argument, the other a more explicit combinatorial analysis. Both proofs are independent of the QLLL. So these results also provide independent, constructive proofs of the commutative QLLL itself, but strengthen it significantly by giving an efficient algorithm for finding the state whose existence is asserted by the QLLL. We give an application of the constructive commutative QLLL to convergence of CP maps. We also extend these results to the non-commutative setting. However, our proof of the general constructive QLLL relies on a conjecture which we are only able to prove in special cases.Comment: 43 pages, 2 conjectures, no figures; unresolved gap in the proof; see arXiv:1311.6474 or arXiv:1310.7766 for correct proofs of the symmetric cas

    Commutative deformations of general relativity: nonlocality, causality, and dark matter

    Get PDF
    Hopf algebra methods are applied to study Drinfeld twists of (3+1)-diffeomorphisms and deformed general relativity on \emph{commutative} manifolds. A classical nonlocality length scale is produced above which microcausality emerges. Matter fields are utilized to generate self-consistent Abelian Drinfeld twists in a background independent manner and their continuous and discrete symmetries are examined. There is negligible experimental effect on the standard model of particles. While baryonic twist producing matter would begin to behave acausally for rest masses above ∼1−10\sim1-10 TeV, other possibilities are viable dark matter candidates or a right handed neutrino. First order deformed Maxwell equations are derived and yield immeasurably small cosmological dispersion and produce a propagation horizon only for photons at or above Planck energies. This model incorporates dark matter without any appeal to extra dimensions, supersymmetry, strings, grand unified theories, mirror worlds, or modifications of Newtonian dynamics.Comment: 47 pages including references, 0 figures, 0 tables Various typos/omissions correcte

    The microscopic dynamics of quantum space as a group field theory

    Full text link
    We provide a rather extended introduction to the group field theory approach to quantum gravity, and the main ideas behind it. We present in some detail the GFT quantization of 3d Riemannian gravity, and discuss briefly the current status of the 4-dimensional extensions of this construction. We also briefly report on recent results obtained in this approach and related open issues, concerning both the mathematical definition of GFT models, and possible avenues towards extracting interesting physics from them.Comment: 60 pages. Extensively revised version of the contribution to "Foundations of Space and Time: Reflections on Quantum Gravity", edited by G. Ellis, J. Murugan, A. Weltman, published by Cambridge University Pres

    Geometry, stochastic calculus and quantum fields in a non-commutative space-time

    Full text link
    The algebras of non-relativistic and of classical mechanics are unstable algebraic structures. Their deformation towards stable structures leads, respectively, to relativity and to quantum mechanics. Likewise, the combined relativistic quantum mechanics algebra is also unstable. Its stabilization requires the non-commutativity of the space-time coordinates and the existence of a fundamental length constant. The new relativistic quantum mechanics algebra has important consequences on the geometry of space-time, on quantum stochastic calculus and on the construction of quantum fields. Some of these effects are studied in this paper.Comment: 36 pages Latex, 1 eps figur

    Marginal and Relevant Deformations of N=4 Field Theories and Non-Commutative Moduli Spaces of Vacua

    Get PDF
    We study marginal and relevant supersymmetric deformations of the N=4 super-Yang-Mills theory in four dimensions. Our primary innovation is the interpretation of the moduli spaces of vacua of these theories as non-commutative spaces. The construction of these spaces relies on the representation theory of the related quantum algebras, which are obtained from F-term constraints. These field theories are dual to superstring theories propagating on deformations of the AdS_5xS^5 geometry. We study D-branes propagating in these vacua and introduce the appropriate notion of algebraic geometry for non-commutative spaces. The resulting moduli spaces of D-branes have several novel features. In particular, they may be interpreted as symmetric products of non-commutative spaces. We show how mirror symmetry between these deformed geometries and orbifold theories follows from T-duality. Many features of the dual closed string theory may be identified within the non-commutative algebra. In particular, we make progress towards understanding the K-theory necessary for backgrounds where the Neveu-Schwarz antisymmetric tensor of the string is turned on, and we shed light on some aspects of discrete anomalies based on the non-commutative geometry.Comment: 60 pages, 4 figures, JHEP format, amsfonts, amssymb, amsmat
    • …
    corecore