73,697 research outputs found

    Monitoring and performance analysis of regression profiles

    Get PDF
    There are many cases in industrial and non-industrial sections where the quality characteristics are in the form of profiles. Profile monitoring is a relatively new set of techniques in statistical quality control that is used in situations where the state of product or process is presented by regression models. In the past few years, most research in the field of profile monitoring has mainly focused on the use of effective statistical charting methods, study of more general shapes of profiles, and the effects of violations of assumptions in profile monitoring. Despite several research on the application of artificial neural networks to statistical quality control, no research has investigated the application of neural networks in monitoring profiles. Likewise, there is no research in the literature on the process capability analysis in profile processes. The process capability analysis is to evaluate the ability of a process to meet the customer/engineering specifications and must be done in Phase I of profile monitoring. In a review study on profile monitoring, Woodall (2007) pointed out the importance of process capability analysis in profiles. In this research, we use artificial neural networks (ANN) to detect and classify shifts in linear profiles. Three monitoring methods based on ANN are developed to monitor linear profiles in Phase II. We compare the results for different shift scenarios with existing methods in linear profile monitoring and discuss the results. Furthermore, in this thesis, we evaluate the estimation of process capability indices (PCIs) in linear profiles. We propose a method based on the relationship between proportions of non-conformance and the process capability indices in the profile process. In most existing profile monitoring methods in the literature, it is assumed that the profile design points are deterministic (fixed) so they are unchanged from one profile to another one. In this research, we investigate the estimation of the PCI in normal linear profiles for different scenarios of deterministic and arbitrary (random) data acquisition schemes as well as fixed or linear functional specification limits. We apply the proposed method in estimating the PCI in a yogurt production process. This thesis also focuses on the investigation of the process capability analysis in profiles with non-normal error terms. In this study, we review the methods for estimating PCI in non-normal data and carry out a comprehensive comparison study to evaluate the performance of these methods. Then these methods are applied in the leukocyte filtering process to evaluate the PCI with effect of non-normality in a blood service section. In addition, we develop a new method based on neural networks to estimate the parameters of the Burr XII distribution, which is required in some of the PCI estimation methods with non-normal environments. Finally, in this research we propose five methods to estimate process capability index in profiles where residuals follow non-normal distributions. In a comparison study using Monte Carlo simulations we evaluate the performance of the proposed methods in terms of their precision and accuracy. We provide conclusions and recommendation for the future research at the end

    Strategic toolkits: seniority, usage and performance in the German SME machinery and equipment sector

    Get PDF
    This paper examines the strategic tool kit, from a human resource management (HRM) perspective, in terms of usage and impact. Research to date has tended to consider usage, assuming to a certain extent that knowledge and understanding of particular tools suggest that practitioners value them. The research on which this paper is based builds upon the idea that usage indicates satisfaction, but develops the usage theme to investigate which decision-makers are actually engaged in both tool appliance and the strategic process. Of particular interest to the researchers are the educational background, age and seniority of the decision-makers. In addition, potential links with HRM and organizational performance are also explored. The context of the research, the German machinery and equipment sector, provides an insight into the industry's ability to sustain growth in face of increasing international competition. The paper calls for a greater awareness, from a human resource perspective, and utilization of strategic management practice and associated decision-making aids

    Advanced SBAS-DInSAR technique for controlling large civil infrastructures: an application to the Genzano di Lucania dam

    Get PDF
    Monitoring surface deformation on dams is commonly carried out by in situ geodetic surveying, which is time consuming and characterized by some limitations in space coverage and frequency. More recently microwave satellite-based technologies, such as advanced-DInSAR (Differential Synthetic Aperture Radar Interferometry), have allowed the integration and improvement of the observation capabilities of ground-based methods thanks to their effectiveness in collecting displacement measurements on many non-destructive control points, corresponding to radar reflecting targets. The availability of such a large number of points of measurement, which are distributed along the whole structure and are characterized by millimetric accuracy on displacement rates, can be profitably adopted for the calibration of numerical models. These models are implemented to simulate the structural behaviour of a dam under conditions of stress thus improving the ability to maintain safety standards. In this work, after having analysed how advanced DInSAR can effectively enhance the results from traditional monitoring systems that provide comparable accuracy measurements on a limited number of points, an FEM model of the Genzano di Lucania earth dam is developed and calibrated. This work is concentrated on the advanced DInSAR technique referred to as Small BAseline Subset (SBAS) approach, benefiting from its capability to generate deformation time series at full spatial resolution and from multi-sensor SAR data, to measure the vertical consolidation displacement of the Genzano di Lucania earth dam

    Effects of integration time on in-water radiometric profiles

    Get PDF
    This work investigates the effects of integration time on in-water downward irradiance E-d, upward irradiance E-u and upwelling radiance L-u profile data acquired with free-fall hyperspectral systems. Analyzed quantities are the subsurface value and the diffuse attenuation coefficient derived by applying linear and non-linear regression schemes. Case studies include oligotrophic waters (Case-1), as well as waters dominated by colored dissolved organic matter (CDOM) and non-algal particles (NAP). Assuming a 24-bit digitization, measurements resulting from the accumulation of photons over integration times varying between 8 and 2048ms are evaluated at depths corresponding to: 1) the beginning of each integration interval (FST); 2) the end of each integration interval (LST); 3) the averages of FST and LST values (AVG); and finally 4) the values weighted accounting for the diffuse attenuation coefficient of water (WGT). Statistical figures show that the effects of integration time can bias results well above 5% as a function of the depth definition. Results indicate the validity of the WGT depth definition and the fair applicability of the AVG one. Instead, both the FST and LST depths should not be adopted since they may introduce pronounced biases in E-u and L-u regression products for highly absorbing waters. Finally, the study reconfirms the relevance of combining multiple radiometric casts into a single profile to increase precision of regression products. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

    A cDNA Microarray Gene Expression Data Classifier for Clinical Diagnostics Based on Graph Theory

    Get PDF
    Despite great advances in discovering cancer molecular profiles, the proper application of microarray technology to routine clinical diagnostics is still a challenge. Current practices in the classification of microarrays' data show two main limitations: the reliability of the training data sets used to build the classifiers, and the classifiers' performances, especially when the sample to be classified does not belong to any of the available classes. In this case, state-of-the-art algorithms usually produce a high rate of false positives that, in real diagnostic applications, are unacceptable. To address this problem, this paper presents a new cDNA microarray data classification algorithm based on graph theory and is able to overcome most of the limitations of known classification methodologies. The classifier works by analyzing gene expression data organized in an innovative data structure based on graphs, where vertices correspond to genes and edges to gene expression relationships. To demonstrate the novelty of the proposed approach, the authors present an experimental performance comparison between the proposed classifier and several state-of-the-art classification algorithm
    • ā€¦
    corecore