58 research outputs found

    Proxcache: A new cache deployment strategy in information-centric network for mitigating path and content redundancy

    Get PDF
    One of the promising paradigms for resource sharing with maintaining the basic Internet semantics is the Information-Centric Networking (ICN). ICN distinction with the current Internet is its ability to refer contents by names with partly dissociating the host-to-host practice of Internet Protocol addresses. Moreover, content caching in ICN is the major action of achieving content networking to reduce the amount of server access. The current caching practice in ICN using the Leave Copy Everywhere (LCE) progenerate problems of over deposition of contents known as content redundancy, path redundancy, lesser cache-hit rates in heterogeneous networks and lower content diversity. This study proposes a new cache deployment strategy referred to as ProXcache to acquire node relationships using hyperedge concept of hypergraph for cache positioning. The study formulates the relationships through the path and distance approximation to mitigate content and path redundancy. The study adopted the Design Research Methodology approach to achieve the slated research objectives. ProXcache was investigated using simulation on the Abilene, GEANT and the DTelekom network topologies for LCE and ProbCache caching strategies with the Zipf distribution to differ content categorization. The results show the overall content and path redundancy are minimized with lesser caching operation of six depositions per request as compared to nine and nineteen for ProbCache and LCE respectively. ProXcache yields better content diversity ratio of 80% against 20% and 49% for LCE and ProbCache respectively as the cache sizes varied. ProXcache also improves the cache-hit ratio through proxy positions. These thus, have significant influence in the development of the ICN for better management of contents towards subscribing to the Future Internet

    Do we all really know what a fog node is? Current trends towards an open definition

    Get PDF
    Fog computing has emerged as a promising technology that can bring cloud applications closer to the physical IoT devices at the network edge. While it is widely known what cloud computing is, how data centers can build the cloud infrastructure and how applications can make use of this infrastructure, there is no common picture on what fog computing and particularly a fog node, as its main building block, really is. One of the first attempts to define a fog node was made by Cisco, qualifying a fog computing system as a “mini-cloud” located at the edge of the network and implemented through a variety of edge devices, interconnected by a variety, mostly wireless, communication technologies. Thus, a fog node would be the infrastructure implementing the said mini-cloud. Other proposals have their own definition of what a fog node is, usually in relation to a specific edge device, a specific use case or an application. In this paper, we first survey the state of the art in technologies for fog computing nodes, paying special attention to the contributions that analyze the role edge devices play in the fog node definition. We summarize and compare the concepts, lessons learned from their implementation, and end up showing how a conceptual framework is emerging towards a unifying fog node definition. We focus on core functionalities of a fog node as well as in the accompanying opportunities and challenges towards their practical realization in the near future.Postprint (author's final draft

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram

    Intelligent Control and Security of Fog Resources in Healthcare Systems via a Cognitive Fog Model

    Get PDF
    There have been significant advances in the field of Internet of Things (IoT) recently, which have not always considered security or data security concerns: A high degree of security is required when considering the sharing of medical data over networks. In most IoT-based systems, especially those within smart-homes and smart-cities, there is a bridging point (fog computing) between a sensor network and the Internet which often just performs basic functions such as translating between the protocols used in the Internet and sensor networks, as well as small amounts of data processing. The fog nodes can have useful knowledge and potential for constructive security and control over both the sensor network and the data transmitted over the Internet. Smart healthcare services utilise such networks of IoT systems. It is therefore vital that medical data emanating from IoT systems is highly secure, to prevent fraudulent use, whilst maintaining quality of service providing assured, verified and complete data. In this paper, we examine the development of a Cognitive Fog (CF) model, for secure, smart healthcare services, that is able to make decisions such as opting-in and opting-out from running processes and invoking new processes when required, and providing security for the operational processes within the fog system. Overall, the proposed ensemble security model performed better in terms of Accuracy Rate, Detection Rate, and a lower False Positive Rate (standard intrusion detection measurements) than three base classifiers (K-NN, DBSCAN and DT) using a standard security dataset (NSL-KDD)

    Distributed Fog computing for Internet of Things (IoT) based Ambient Data Processing and Analysis

    Get PDF
    Urban centers across the globe are under immense environmental distress due to an increase in air pollution, industrialization, and elevated living standards. The unmanageable and mushroom growth of industries and an exponential soar in population has made the ascent of air pollution intractable. To this end, the solutions that are based on the latest technologies, such as the Internet of things (IoT) and Artificial Intelligence (AI) are becoming increasingly popular and they have capabilities to monitor the extent and scale of air contaminants and would be subsequently useful for containing them. With centralized cloud-based IoT platforms, the ubiquitous and continuous monitoring of air quality and data processing can be facilitated for the identification of air pollution hot spots. However, owing to the inherent characteristics of cloud, such as large end-to-end delay and bandwidth constraint, handling the high velocity and large volume of data that are generated by distributed IoT sensors would not be feasible in the longer run. To address these issues, fog computing is a powerful paradigm, where the data are processed and filtered near the end of the IoT nodes and it is useful for improving the quality of service (QoS) of IoT network. To further improve the QoS, a conceptual model of distributed fog computing and a machine learning based data processing and analysis model is proposed for the optimal utilization of cloud resources. The proposed model provides a classification accuracy of 99% while using a Support Vector Machines (SVM) classifier. This model is also simulated in iFogSim toolkit. It affords many advantages, such as reduced load on the central server by locally processing the data and reporting the quality of air. Additionally, it would offer the scalability of the system by integrating more air quality monitoring nodes in the IoT network

    Fog Computing in IoT Smart Environments via Named Data Networking: A Study on Service Orchestration Mechanisms

    Get PDF
    [EN] By offering low-latency and context-aware services, fog computing will have a peculiar role in the deployment of Internet of Things (IoT) applications for smart environments. Unlike the conventional remote cloud, for which consolidated architectures and deployment options exist, many design and implementation aspects remain open when considering the latest fog computing paradigm. In this paper, we focus on the problems of dynamically discovering the processing and storage resources distributed among fog nodes and, accordingly, orchestrating them for the provisioning of IoT services for smart environments. In particular, we show how these functionalities can be effectively supported by the revolutionary Named Data Networking (NDN) paradigm. Originally conceived to support named content delivery, NDN can be extended to request and provide named computation services, with NDN nodes acting as both content routers and in-network service executors. To substantiate our analysis, we present an NDN fog computing framework with focus on a smart campus scenario, where the execution of IoT services is dynamically orchestrated and performed by NDN nodes in a distributed fashion. A simulation campaign in ndnSIM, the reference network simulator of the NDN research community, is also presented to assess the performance of our proposal against state-of-the-art solutions. Results confirm the superiority of the proposal in terms of service provisioning time, paid at the expenses of a slightly higher amount of traffic exchanged among fog nodes.This research was partially funded by the Italian Government under grant PON ARS01_00836 for the COGITO (A COGnItive dynamic sysTem to allOw buildings to learn and adapt) PON Project.Amadeo, M.; Ruggeri, G.; Campolo, C.; Molinaro, A.; Loscri, V.; Tavares De Araujo Cesariny Calafate, CM. (2019). Fog Computing in IoT Smart Environments via Named Data Networking: A Study on Service Orchestration Mechanisms. Future Internet. 11(11):1-21. https://doi.org/10.3390/fi11110222S1211111Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431-440. doi:10.1016/j.bushor.2015.03.008Cicirelli, F., Guerrieri, A., Spezzano, G., Vinci, A., Briante, O., Iera, A., & Ruggeri, G. (2018). Edge Computing and Social Internet of Things for Large-Scale Smart Environments Development. IEEE Internet of Things Journal, 5(4), 2557-2571. doi:10.1109/jiot.2017.2775739Chiang, M., & Zhang, T. (2016). Fog and IoT: An Overview of Research Opportunities. IEEE Internet of Things Journal, 3(6), 854-864. doi:10.1109/jiot.2016.2584538Openfog Consortiumhttp://www.openfogconsortium.org/Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, kc, Crowley, P., … Zhang, B. (2014). Named data networking. ACM SIGCOMM Computer Communication Review, 44(3), 66-73. doi:10.1145/2656877.2656887Amadeo, M., Ruggeri, G., Campolo, C., & Molinaro, A. (2019). IoT Services Allocation at the Edge via Named Data Networking: From Optimal Bounds to Practical Design. IEEE Transactions on Network and Service Management, 16(2), 661-674. doi:10.1109/tnsm.2019.2900274ndnSIM 2.0: A New Version of the NDN Simulator for NS-3https://www.researchgate.net/profile/Spyridon_Mastorakis/publication/281652451_ndnSIM_20_A_new_version_of_the_NDN_simulator_for_NS-3/links/5b196020a6fdcca67b63660d/ndnSIM-20-A-new-version-of-the-NDN-simulator-for-NS-3.pdfAhlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., & Ohlman, B. (2012). A survey of information-centric networking. IEEE Communications Magazine, 50(7), 26-36. doi:10.1109/mcom.2012.6231276NFD Developer’s Guidehttps://named-data.net/wp-content/uploads/2016/03/ndn-0021-diff-5..6-nfd-developer-guide.pdfPiro, G., Amadeo, M., Boggia, G., Campolo, C., Grieco, L. A., Molinaro, A., & Ruggeri, G. (2019). Gazing into the Crystal Ball: When the Future Internet Meets the Mobile Clouds. IEEE Transactions on Cloud Computing, 7(1), 210-223. doi:10.1109/tcc.2016.2573307Zhang, G., Li, Y., & Lin, T. (2013). Caching in information centric networking: A survey. Computer Networks, 57(16), 3128-3141. doi:10.1016/j.comnet.2013.07.007Yi, C., Afanasyev, A., Moiseenko, I., Wang, L., Zhang, B., & Zhang, L. (2013). A case for stateful forwarding plane. Computer Communications, 36(7), 779-791. doi:10.1016/j.comcom.2013.01.005Amadeo, M., Briante, O., Campolo, C., Molinaro, A., & Ruggeri, G. (2016). Information-centric networking for M2M communications: Design and deployment. Computer Communications, 89-90, 105-116. doi:10.1016/j.comcom.2016.03.009Tourani, R., Misra, S., Mick, T., & Panwar, G. (2018). Security, Privacy, and Access Control in Information-Centric Networking: A Survey. IEEE Communications Surveys & Tutorials, 20(1), 566-600. doi:10.1109/comst.2017.2749508Ndn-ace: Access Control for Constrained Environments over Named Data Networkinghttp://new.named-data.net/wp-content/uploads/2015/12/ndn-0036-1-ndn-ace.pdfZhang, Z., Yu, Y., Zhang, H., Newberry, E., Mastorakis, S., Li, Y., … Zhang, L. (2018). An Overview of Security Support in Named Data Networking. IEEE Communications Magazine, 56(11), 62-68. doi:10.1109/mcom.2018.1701147Cisco White Paperhttps://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdfAazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying Fog Computing in Industrial Internet of Things and Industry 4.0. IEEE Transactions on Industrial Informatics, 14(10), 4674-4682. doi:10.1109/tii.2018.2855198Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., & Chen, S. (2016). Vehicular Fog Computing: A Viewpoint of Vehicles as the Infrastructures. IEEE Transactions on Vehicular Technology, 65(6), 3860-3873. doi:10.1109/tvt.2016.2532863Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., … Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289-330. doi:10.1016/j.sysarc.2019.02.009Baktir, A. C., Ozgovde, A., & Ersoy, C. (2017). How Can Edge Computing Benefit From Software-Defined Networking: A Survey, Use Cases, and Future Directions. IEEE Communications Surveys & Tutorials, 19(4), 2359-2391. doi:10.1109/comst.2017.2717482Duan, Q., Yan, Y., & Vasilakos, A. V. (2012). A Survey on Service-Oriented Network Virtualization Toward Convergence of Networking and Cloud Computing. IEEE Transactions on Network and Service Management, 9(4), 373-392. doi:10.1109/tnsm.2012.113012.120310Amadeo, M., Campolo, C., & Molinaro, A. (2016). NDNe: Enhancing Named Data Networking to Support Cloudification at the Edge. IEEE Communications Letters, 20(11), 2264-2267. doi:10.1109/lcomm.2016.2597850Krol, M., Marxer, C., Grewe, D., Psaras, I., & Tschudin, C. (2018). Open Security Issues for Edge Named Function Environments. IEEE Communications Magazine, 56(11), 69-75. doi:10.1109/mcom.2018.170111711801-2:2017 Information Technology—Generic Cabling for Customer Premiseshttps://www.iso.org/standard/66183.htm

    Cloud and mobile infrastructure monitoring for latency and bandwidth sensitive applications

    Get PDF
    This PhD thesis involves the study of cloud computing infrastructures (from the networking perspective) to assess the feasibility of applications gaining increasing popularity over recent years, including multimedia and telemedicine applications, demanding low, bounded latency and sufficient bandwidth. I also focus on the case of telemedicine, where remote imaging applications (for example, telepathology or telesurgery) need to achieve a low and stable latency for the remote transmission of images, and also for the remote control of such equipment. Another important use case for telemedicine is denoted as remote computation, which involves the offloading of image processing to help diagnosis; also in this case, bandwidth and latency requirements should be enforced to ensure timely results, although they are less strict compared to the previous scenario. Nowadays, the capability of gaining access to IT resources in a rapid and on-demand fashion, according to a pay-as-you-go model, has made the cloud computing a key-enabler for innovative multimedia and telemedicine services. However, the partial obscurity of cloud performance, and also security concerns are still hindering the adoption of cloud infrastructure. To ensure that the requirements of applications running on the cloud are satisfied, there is the need to design and evaluate proper methodologies, according to the metric of interest. Moreover, some kinds of applications have specific requirements that cannot be satisfied by the current cloud infrastructure. In particular, since the cloud computing involves communication to remote servers, two problems arise: firstly, the core network infrastructure can be overloaded, considering the massive amount of data that has to flow through it to allow clients to reach the datacenters; secondly, the latency resulting from this remote interaction between clients and servers is increased. For these, and many other cases also beyond the field of telemedicine, the Edge and Fog computing paradigms were introduced. In these new paradigms, the IT resources are deployed not only in the core cloud datacenters, but also at the edge of the network, either in the telecom operator access network or even leveraging other users' devices. The proximity of resources to end-users allows to alleviate the burden on the core network and at the same time to reduce latency towards users. Indeed, the latency from users to remote cloud datacenters encompasses delays from the access and core networks, as well as the intra-datacenter delay. Therefore, this latency is expected to be higher than that required to interconnect users to edge servers, which in the envisioned paradigm are deployed in the access network, that is, nearby final users. Therefore, the edge latency is expected to be reduced to only a portion of the overall cloud delay. Moreover, the edge and central resources can be used in conjunction, and therefore attention to core cloud monitoring is of capital importance even when edge architectures will have a widespread adoption, which is not the case yet. While a lot of research work has been presented for monitoring several network-related metrics, such as bandwidth, latency, jitter and packet loss, less attention was given to the monitoring of latency in cloud and edge cloud infrastructures. In detail, while some works target cloud-latency monitoring, the evaluation is lacking a fine-grained analysis of latency considering spatial and temporal trends. Furthermore, the widespread adoption of mobile devices, and the Internet of Things paradigm further accelerate the shift towards the cloud paradigm for the additional benefits it can provide in this context, allowing energy savings and augmenting the computation capabilities of these devices, creating a new scenario denoted as mobile cloud. This scenario poses additional challenges for its bandwidth constraints, accentuating the need for tailored methodologies that can ensure that the crucial requirements of the aforementioned applications can be met by the current infrastructure. In this sense, there is still a gap of works monitoring bandwidth-related metrics in mobile networks, especially when performing in-the-wild assessment targeting actual mobile networks and operators. Moreover, even the few works testing real scenarios typically consider only one provider in one country for a limited period of time, lacking an in-depth assessment of bandwidth variability over space and time. In this thesis, I therefore consider monitoring methodologies for challenging scenarios, focusing on latency perceived by customers of public cloud providers, and bandwidth in mobile broadband networks. Indeed, as described, achieving low latency is a critical requirement for core cloud infrastructures, while providing enough bandwidth is still challenging in mobile networks compared to wired settings, even with the adoption of 4G mobile broadband networks, expecting to overcome this issue only with the widespread availability of 5G connections (with half of total traffic expected to come from 5G networks by 2026). Therefore, in the research activities carried on during my PhD, I focused on monitoring latency and bandwidth on cloud and mobile infrastructures, assessing to which extent the current public cloud infrastructure and mobile network make multimedia and telemedicine applications (as well as others having similar requirements) feasible
    • …
    corecore