82 research outputs found

    Machine Learning Algorithm for the Scansion of Old Saxon Poetry

    Get PDF
    Several scholars designed tools to perform the automatic scansion of poetry in many languages, but none of these tools deal with Old Saxon or Old English. This project aims to be a first attempt to create a tool for these languages. We implemented a Bidirectional Long Short-Term Memory (BiLSTM) model to perform the automatic scansion of Old Saxon and Old English poems. Since this model uses supervised learning, we manually annotated the Heliand manuscript, and we used the resulting corpus as labeled dataset to train the model. The evaluation of the performance of the algorithm reached a 97% for the accuracy and a 99% of weighted average for precision, recall and F1 Score. In addition, we tested the model with some verses from the Old Saxon Genesis and some from The Battle of Brunanburh, and we observed that the model predicted almost all Old Saxon metrical patterns correctly misclassified the majority of the Old English input verses

    Adaptive Automated Machine Learning

    Get PDF
    The ever-growing demand for machine learning has led to the development of automated machine learning (AutoML) systems that can be used off the shelf by non-experts. Further, the demand for ML applications with high predictive performance exceeds the number of machine learning experts and makes the development of AutoML systems necessary. Automated Machine Learning tackles the problem of finding machine learning models with high predictive performance. Existing approaches incorporating deep learning techniques assume that all data is available at the beginning of the training process (offline learning). They configure and optimise a pipeline of preprocessing, feature engineering, and model selection by choosing suitable hyperparameters in each model pipeline step. Furthermore, they assume that the user is fully aware of the choice and, thus, the consequences of the underlying metric (such as precision, recall, or F1-measure). By variation of this metric, the search for suitable configurations and thus the adaptation of algorithms can be tailored to the user’s needs. With the creation of a vast amount of data from all kinds of sources every day, our capability to process and understand these data sets in a single batch is no longer viable. By training machine learning models incrementally (i.ex. online learning), the flood of data can be processed sequentially within data streams. However, if one assumes an online learning scenario, where an AutoML instance executes on evolving data streams, the question of the best model and its configuration remains open. In this work, we address the adaptation of AutoML in an offline learning scenario toward a certain utility an end-user might pursue as well as the adaptation of AutoML towards evolving data streams in an online learning scenario with three main contributions: 1. We propose a System that allows the adaptation of AutoML and the search for neural architectures towards a particular utility an end-user might pursue. 2. We introduce an online deep learning framework that fosters the research of deep learning models under the online learning assumption and enables the automated search for neural architectures. 3. We introduce an online AutoML framework that allows the incremental adaptation of ML models. We evaluate the contributions individually, in accordance with predefined requirements and to state-of-the- art evaluation setups. The outcomes lead us to conclude that (i) AutoML, as well as systems for neural architecture search, can be steered towards individual utilities by learning a designated ranking model from pairwise preferences and using the latter as the target function for the offline learning scenario; (ii) architectual small neural networks are in general suitable assuming an online learning scenario; (iii) the configuration of machine learning pipelines can be automatically be adapted to ever-evolving data streams and lead to better performances

    24th Nordic Conference on Computational Linguistics (NoDaLiDa)

    Get PDF

    Operational research:methods and applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    New Approaches to Software Security Metrics and Measurements

    Get PDF
    Meaningful metrics and methods for measuring software security would greatly improve the security of software ecosystems. Such means would make security an observable attribute, helping users make informed choices and allowing vendors to ‘charge’ for it—thus, providing strong incentives for more security investment. This dissertation presents three empirical measurement studies introducing new approaches to measuring aspects of software security, focusing on Free/Libre and Open Source Software (FLOSS). First, to revisit the fundamental question of whether software is maturing over time, we study the vulnerability rate of packages in stable releases of the Debian GNU/Linux software distribution. Measuring the vulnerability rate through the lens of Debian stable: (a) provides a natural time frame to test for maturing behavior, (b) reduces noise and bias in the data (only CVEs with a Debian Security Advisory), and (c) provides a best-case assessment of maturity (as the Debian release cycle is rather conservative). Overall, our results do not support the hypothesis that software in Debian is maturing over time, suggesting that vulnerability finding-and-fixing does not scale and more effort should be invested in significantly reducing the introduction rate of vulnerabilities, e.g. via ‘security by design’ approaches like memory-safe programming languages. Second, to gain insights beyond the number of reported vulnerabilities, we study how long vulnerabilities remain in the code of popular FLOSS projects (i.e. their lifetimes). We provide the first, to the best of our knowledge, method for automatically estimating the mean lifetime of a set of vulnerabilities based on information in vulnerability-fixing commits. Using this method, we study the lifetimes of ~6 000 CVEs in 11 popular FLOSS projects. Among a number of findings, we identify two quantities of particular interest for software security metrics: (a) the spread between mean vulnerability lifetime and mean code age at the time of fix, and (b) the rate of change of the aforementioned spread. Third, to gain insights into the important human aspect of the vulnerability finding process, we study the characteristics of vulnerability reporters for 4 popular FLOSS projects. We provide the first, to the best of our knowledge, method to create a large dataset of vulnerability reporters (>2 000 reporters for >4 500 CVEs) by combining information from a number of publicly available online sources. We proceed to analyze the dataset and identify a number of quantities that, suitably combined, can provide indications regarding the health of a project’s vulnerability finding ecosystem. Overall, we showed that measurement studies carefully designed to target crucial aspects of the software security ecosystem can provide valuable insights and indications regarding the ‘quality of security’ of software. However, the road to good security metrics is still long. New approaches covering other important aspects of the process are needed, while the approaches introduced in this dissertation should be further developed and improved

    Lessons from European Energy Research and Energy RIs: Towards a European Science of Research Organizations?

    Get PDF

    Secure Information Sharing with Distributed Ledgers

    Get PDF
    In 2009, blockchain technology was first introduced as the supporting database technology for digital currencies. Since then, more advanced derivations of the technology have been developed under the broader term Distributed Ledgers, with improved scalability and support for general-purpose application logic. As a distributed database, they are able to support interorganizational information sharing while assuring desirable information security attributes like non-repudiation, auditability and transparency. Based on these characteristics, researchers and practitioners alike have begun to identify a plethora of disruptive use cases for Distributed Ledgers in existing application domains. While these use cases are promising significant efficiency improvements and cost reductions, practical adoption has been slow in the past years. This dissertation focuses on improving three aspects contributing to slow adoption. First, it attempts to identify application areas and substantiated use cases where Distributed Ledgers can considerably advance the security of information sharing. Second, it considers the security aspects of the technology itself, identifying threats to practical applications and detection approaches for these threats. And third, it investigates success factors for successful interorganizational collaborations using Distributed Ledgers
    corecore