29 research outputs found

    Understanding Game-based Approaches for Improving Sustainable Water Governance : The Potential of Serious Games to Solve Water Problems

    Get PDF
    The sustainable governance of water resources relies on processes of multi-stakeholder collaborations and interactions that facilitate knowledge co-creation and social learning. Governance systems are often fragmented, forming a barrier to adequately addressing the myriad of challenges affecting water resources, including climate change, increased urbanized populations, and pollution. Transitions towards sustainable water governance will likely require innovative learning partnerships between public, private, and civil society stakeholders. It is essential that such partnerships involve vertical and horizontal communication of ideas and knowledge, and an enabling and democratic environment characterized by informal and open discourse. There is increasing interest in learning-based transitions. Thus far, much scholarly thinking and, to a lesser degree, empirical research has gone into understanding the potential impact of social learning on multi-stakeholder settings. The question of whether such learning can be supported by forms of serious gaming has hardly been asked. This Special Issue critically explores the potential of serious games to support multi-stakeholder social learning and collaborations in the context of water governance. Serious games may involve simulations of real-world events and processes and are challenge players to solve contemporary societal problems; they, therefore, have a purpose beyond entertainment. They offer a largely untapped potential to support social learning and collaboration by facilitating access to and the exchange of knowledge and information, enhancing stakeholder interactions, empowering a wider audience to participate in decision making, and providing opportunities to test and analyze the outcomes of policies and management solutions. Little is known about how game-based approaches can be used in the context of collaborative water governance to maximize their potential for social learning. While several studies have reported examples of serious games, there is comparably less research about how to assess the impacts of serious games on social learning and transformative change

    The Use of Games and Crowdsourcing for the Fabrication-aware Design of Residential Buildings

    Get PDF
    State-of-the-art participatory design acknowledges the true, ill-defined nature of design problems, taking into account stakeholders' values and preferences. However, it overburdens the architect, who has to synthesize far more constraints into a one-of-a-kind design. Generative Design promises to equip architects with great power to standardize and systemize the design process. However, the common trap of generative design is trying to treat architecture simply as a tame problem. In this work, I investigate the use of games and crowdsourcing in architecture through two sets of explorative questions. First, if everyone can participate in the network-enabled creation of the built environment, what role will they play? And what tools will they need to enable them? And second, if anyone can use digital fabrication to build any building, how will we design it? What design paradigms will govern this process? I present a map of design paradigms that lie at the intersections of Participatory Design, Generative Design, Game Design, and Crowd Wisdom. In four case studies, I explore techniques to employ the practices from the four fields in the service of architecture. Generative Design can lower the difficulty of the challenge to design by automating a large portion of the work. A newly formulated, unified taxonomy of generative design across the disciplines of architecture, computer science, and computer games builds the base for the use of algorithms in the case studies. The work introduces Playable Voxel-Shape Grammars, a new type of generative technique. It enables Game Design to guide participants through a series of challenges, effectively increasing their skills by helping them understand the underlying principles of the design task at hand. The use of crowdsourcing in architecture can mean thousands of architects creating content for a generative design system, to expand and open up its design space. Crowdsourcing can also be about millions of people online creating designs that an architect or a homeowner can refer to increase their understanding of the complex issues at hand in a given design project and for better decision making. At the same time, game design in architecture helps find the balance between algorithmically exploring pre-defined design alternatives and open-ended, free creativity. The research reveals a layered structure of entry points for crowd-contributed content as well as the granular nature of authorship among four different roles: non-expert stakeholders, architects, the crowd, and the tool-makers

    Game-Based Learning, Gamification in Education and Serious Games

    Get PDF
    The aim of this book is to present and discuss new advances in serious games to show how they could enhance the effectiveness and outreach of education, advertising, social awareness, health, policies, etc. We present their use in structured learning activities, not only with a focus on game-based learning, but also on the use of game elements and game design techniques to gamify the learning process. The published contributions really demonstrate the wide scope of application of game-based approaches in terms of purpose, target groups, technologies and domains and one aspect they have in common is that they provide evidence of how effective serious games, game-based learning and gamification can be

    Recent Advances in Motion Analysis

    Get PDF
    The advances in the technology and methodology for human movement capture and analysis over the last decade have been remarkable. Besides acknowledged approaches for kinematic, dynamic, and electromyographic (EMG) analysis carried out in the laboratory, more recently developed devices, such as wearables, inertial measurement units, ambient sensors, and cameras or depth sensors, have been adopted on a wide scale. Furthermore, computational intelligence (CI) methods, such as artificial neural networks, have recently emerged as promising tools for the development and application of intelligent systems in motion analysis. Thus, the synergy of classic instrumentation and novel smart devices and techniques has created unique capabilities in the continuous monitoring of motor behaviors in different fields, such as clinics, sports, and ergonomics. However, real-time sensing, signal processing, human activity recognition, and characterization and interpretation of motion metrics and behaviors from sensor data still representing a challenging problem not only in laboratories but also at home and in the community. This book addresses open research issues related to the improvement of classic approaches and the development of novel technologies and techniques in the domain of motion analysis in all the various fields of application

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Visual Analysis of High-Dimensional Point Clouds using Topological Abstraction

    Get PDF
    This thesis is about visualizing a kind of data that is trivial to process by computers but difficult to imagine by humans because nature does not allow for intuition with this type of information: high-dimensional data. Such data often result from representing observations of objects under various aspects or with different properties. In many applications, a typical, laborious task is to find related objects or to group those that are similar to each other. One classic solution for this task is to imagine the data as vectors in a Euclidean space with object variables as dimensions. Utilizing Euclidean distance as a measure of similarity, objects with similar properties and values accumulate to groups, so-called clusters, that are exposed by cluster analysis on the high-dimensional point cloud. Because similar vectors can be thought of as objects that are alike in terms of their attributes, the point cloud\''s structure and individual cluster properties, like their size or compactness, summarize data categories and their relative importance. The contribution of this thesis is a novel analysis approach for visual exploration of high-dimensional point clouds without suffering from structural occlusion. The work is based on implementing two key concepts: The first idea is to discard those geometric properties that cannot be preserved and, thus, lead to the typical artifacts. Topological concepts are used instead to shift away the focus from a point-centered view on the data to a more structure-centered perspective. The advantage is that topology-driven clustering information can be extracted in the data\''s original domain and be preserved without loss in low dimensions. The second idea is to split the analysis into a topology-based global overview and a subsequent geometric local refinement. The occlusion-free overview enables the analyst to identify features and to link them to other visualizations that permit analysis of those properties not captured by the topological abstraction, e.g. cluster shape or value distributions in particular dimensions or subspaces. The advantage of separating structure from data point analysis is that restricting local analysis only to data subsets significantly reduces artifacts and the visual complexity of standard techniques. That is, the additional topological layer enables the analyst to identify structure that was hidden before and to focus on particular features by suppressing irrelevant points during local feature analysis. This thesis addresses the topology-based visual analysis of high-dimensional point clouds for both the time-invariant and the time-varying case. Time-invariant means that the points do not change in their number or positions. That is, the analyst explores the clustering of a fixed and constant set of points. The extension to the time-varying case implies the analysis of a varying clustering, where clusters appear as new, merge or split, or vanish. Especially for high-dimensional data, both tracking---which means to relate features over time---but also visualizing changing structure are difficult problems to solve

    Explaining Self-Motion Perception using Virtual Reality in Patients with Ocular Disease

    Full text link
    Safe mobility requires accurate object and self-motion perception. This involves processing retinal motion generated by optic flow (which change with eye and head movements) and correctly integrating this with vestibular and proprioceptive cues. Poor sensory feedback of self-motion can lead to increased risks of accidents which impacts quality of life. This is further problematic for those with visual deficits, such as central or peripheral vision loss or impaired binocular vision. The expansion of healthcare into using virtual reality (VR) has allowed the assessment of sensory and motor performance in a safe environment. An advantage of VR is its ability to generate vection (perceived illusory self-motion) and presence (sense of being ‘there’). However, a limitation is the potential to develop cybersickness. Initially, the project examined how binocular vision influences vection in a virtual environment. Observers with or without stereopsis (ability to judge depth binocularly) were asked to compare their perceptual experiences based on psychophysical judgements of magnitude estimation. The findings suggest that the absence of stereopsis impairs accurate judgement of self-motion and reduces perceived presence, however, it was protective for cybersickness. The project then examined the impact of central and peripheral vision loss on self-motion perception by comparing those with age-related macular degeneration (AMD) and glaucoma respectively. Effects of these visual deficits on sensory conflicts involving visual-vestibular interactions was then assessed. Sensory conflict was imposed by altering the gain of simulated head linear head position and angular orientation to be either compatible or incompatible with head movement in two separate experiments. Fixation was used to control gaze during changes in angular head orientation. Vection and presence was higher in those with AMD, compared with those with glaucoma, indicating the importance of regional specificity in visual deficits on self-motion perception. Across studies, vection and presence were predominantly visually mediated despite changes in visual-vestibular sensory conflict. The vestibular system, however, appeared to play a larger role in developing cybersickness. The altered perception of self-motion may worsen mobility, particularly with disease progression. We therefore provide a framework and recommendations for a multidisciplinary patient-centric model of care to maximise quality of life

    Raising public awareness of mathematics

    Get PDF
    This book arose from the presentations given at the international workshop held in Óbidos, 26–29 September 2010, as a result of a joint initiative of the Centro Internacional de Matemática and the Raising Public Awareness (RPA) committee of the European Mathematical Society (EMS). The objective was to provide a forum for general reflection with an international mix of experts on building the image of mathematics, ten years after the World Mathematical Year 2000 (WMY 2000). Óbidos, a charming town situated one hour by car to the north of Lisbon, Portugal, was also the site of the re-creation in the year 2000 of the international mathematics exhibition “Beyond the Third Dimension” (http://alem3d.obidos.org/en/) and a meeting of the EMS WMY2000 Committee. The opening of the workshop was also a public “mathematical afternoon” organised by the Portuguese Mathematical Society (SPM) in cooperation with the town of Óbidos. At this event mathematical films and lectures to the general public were presented. The first lecture was given by H. Leitão, from the University of Lisbon, on mathematics in the “Age of Discoveries”, and the second one by G.-M. Greuel, the current president of ERCOM (the EMS committee of the European Research Centres on Mathematics), on the topic “Mathematics between Research, Application and Communication”, which text is included in this book.info:eu-repo/semantics/publishedVersio

    Towards Intelligent Playful Environments for Animals based on Natural User Interfaces

    Full text link
    Tesis por compendioEl estudio de la interacción de los animales con la tecnología y el desarrollo de sistemas tecnológicos centrados en el animal está ganando cada vez más atención desde la aparición del área de Animal Computer Interaction (ACI). ACI persigue mejorar el bienestar de los animales en diferentes entornos a través del desarrollo de tecnología adecuada para ellos siguiendo un enfoque centrado en el animal. Entre las líneas de investigación que ACI está explorando, ha habido bastante interés en la interacción de los animales con la tecnología basada en el juego. Las actividades de juego tecnológicas tienen el potencial de proveer estimulación mental y física a los animales en diferentes contextos, pudiendo ayudar a mejorar su bienestar. Mientras nos embarcamos en la era de la Internet de las Cosas, las actividades de juego tecnológicas actuales para animales todavía no han explorado el desarrollo de soluciones pervasivas que podrían proveerles de más adaptación a sus preferencias a la vez que ofrecer estímulos tecnológicos más variados. En su lugar, estas actividades están normalmente basadas en interacciones digitales en lugar de explorar dispositivos tangibles o aumentar las interacciones con otro tipo de estímulos. Además, estas actividades de juego están ya predefinidas y no cambian con el tiempo, y requieren que un humano provea el dispositivo o la tecnología al animal. Si los humanos pudiesen centrarse más en su participación como jugadores de un sistema interactivo para animales en lugar de estar pendientes de sujetar un dispositivo para el animal o de mantener el sistema ejecutándose, esto podría ayudar a crear lazos más fuertes entre especies y promover mejores relaciones con los animales. Asimismo, la estimulación mental y física de los animales son aspectos importantes que podrían fomentarse si los sistemas de juego diseñados para ellos pudieran ofrecer un variado rango de respuestas, adaptarse a los comportamientos del animal y evitar que se acostumbre al sistema y pierda el interés. Por tanto, esta tesis propone el diseño y desarrollo de entornos tecnológicos de juego basados en Interfaces Naturales de Usuario que puedan adaptarse y reaccionar a las interacciones naturales de los animales. Estos entornos pervasivos permitirían a los animales jugar por si mismos o con una persona, ofreciendo actividades de juego más dinámicas y atractivas capaces de adaptarse con el tiempo.L'estudi de la interacció dels animals amb la tecnologia i el desenvolupament de sistemes tecnològics centrats en l'animal està guanyant cada vegada més atenció des de l'aparició de l'àrea d'Animal Computer Interaction (ACI) . ACI persegueix millorar el benestar dels animals en diferents entorns a través del desenvolupament de tecnologia adequada per a ells amb un enfocament centrat en l'animal. Entre totes les línies d'investigació que ACI està explorant, hi ha hagut prou interès en la interacció dels animals amb la tecnologia basada en el joc. Les activitats de joc tecnològiques tenen el potencial de proveir estimulació mental i física als animals en diferents contextos, podent ajudar a millorar el seu benestar. Mentre ens embarquem en l'era de la Internet de les Coses, les activitats de joc tecnològiques actuals per a animals encara no han explorat el desenvolupament de solucions pervasives que podrien proveir-los de més adaptació a les seues preferències al mateix temps que oferir estímuls tecnològics més variats. En el seu lloc, estes activitats estan normalment basades en interaccions digitals en compte d'explorar dispositius tangibles o augmentar les interaccions amb estímuls de diferent tipus. A més, aquestes activitats de joc estan ja predefinides i no canvien amb el temps, mentre requereixen que un humà proveïsca el dispositiu o la tecnologia a l'animal. Si els humans pogueren centrar-se més en la seua participació com a jugadors actius d'un sistema interactiu per a animals en compte d'estar pendents de subjectar un dispositiu per a l'animal o de mantenir el sistema executant-se, açò podria ajudar a crear llaços més forts entre espècies i promoure millors relacions amb els animals. Així mateix, l'estimulació mental i física dels animals són aspectes importants que podrien fomentar-se si els sistemes de joc dissenyats per a ells pogueren oferir un rang variat de respostes, adaptar-se als comportaments de l'animal i evitar que aquest s'acostume al sistema i perda l'interès. Per tant, esta tesi proposa el disseny i desenvolupament d'entorns tecnològics de joc basats en Interfícies Naturals d'Usuari que puguen adaptar-se i reaccionar a les interaccions naturals dels animals. Aquestos escenaris pervasius podrien permetre als animals jugar per si mateixos o amb una persona, oferint activitats de joc més dinàmiques i atractives que siguen capaces d'adaptar-se amb el temps.The study of animals' interactions with technology and the development of animal-centered technological systems is gaining attention since the emergence of the research area of Animal Computer Interaction (ACI). ACI aims to improve animals' welfare and wellbeing in several scenarios by developing suitable technology for the animal following an animal-centered approach. Among all the research lines ACI is exploring, there has been significant interest in animals' playful interactions with technology. Technologically mediated playful activities have the potential to provide mental and physical stimulation for animals in different environmental contexts, which could in turn help to improve their wellbeing. As we embark in the era of the Internet of Things, current technological playful activities for animals have not yet explored the development of pervasive solutions that could provide animals with more adaptation to their preferences as well as offering varied technological stimuli. Instead, playful technology for animals is usually based on digital interactions rather than exploring tangible devices or augmenting the interactions with different stimuli. In addition, these playful activities are already predefined and do not change over time, while they require that a human has to be the one providing the device or technology to the animal. If humans could focus more on their participation as active players of an interactive system aimed for animals instead of being concerned about holding a device for the animal or keep the system running, this might help to create stronger bonds between species and foster better relationships with animals. Moreover, animals' mental and physical stimulation are important aspects that could be fostered if the playful systems designed for animals could offer a varied range of outputs, be tailored to the animal's behaviors and prevented the animal to get used to the system and lose interest. Therefore, this thesis proposes the design and development of technological playful environments based on Natural User Interfaces that could adapt and react to the animals' natural interactions. These pervasive scenarios would allow animals to play by themselves or with a human, providing more engaging and dynamic playful activities that are capable of adapting over time.Pons Tomás, P. (2018). Towards Intelligent Playful Environments for Animals based on Natural User Interfaces [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113075TESISCompendi
    corecore