189 research outputs found

    Classification of Marine Vessels in a Littoral Environment Using a Novel Training Database

    Get PDF
    Research into object classification has led to the creation of hundreds of databases for use as training sets in object classification algorithms. Datasets made up of thousands of cars, people, boats, faces and everyday objects exist for general classification techniques. However, no commercially available database exists for use with detailed classification and categorization of marine vessels commonly found in littoral environments. This research seeks to fill this void and is the combination of a multi-stage research endeavor designed to provide the missing marine vessel ontology. The first of the two stages performed to date introduces a novel training database called the Lister Littoral Database 900 (LLD-900) made up of over 900 high-quality images. These images consist of high-resolution color photos of marine vessels in working, active conditions taken directly from the field and edited for best possible use. Segmentation masks of each boat have been developed to separate the image into foreground and background sections. Segmentation masks that include boat wakes as part of the foreground section are the final image type included. These are included to allow for wake affordance detection algorithms rely on the small changes found in wakes made by different moving vessels. Each of these three types of images are split into their respective general classification folders, which consist of a differing number of boat categories dependent on the research stage. In the first stage of research, the initial database is tested using a simple, readily available classification algorithm known as the Nearest Neighbor Classifier. The accuracy of the database as a training set is tested and recorded and potential improvements are documented. The second stage incorporates these identified improvements and reconfigures the database before retesting the modifications using the same Nearest Neighbor Classifier along with two new methods known as the K-Nearest Neighbor Classifier and the Min-Mean Distance Classifier. These additional algorithms are also readily available and offer basic classification testing using different classification techniques. Improvements in accuracy are calculated and recorded. Finally, further improvements for a possible third iteration are discussed. The goal of this research is to establish the basis for a training database to be used with classification algorithms to increase the security of ports, harbors, shipping channels and bays. The purpose of the database is to train existing and newly created algorithms to properly identify and classify all boats found in littoral areas so that anomalous behavior detection techniques can be applied to determine when a threat is present. This research represents the completion of the initial steps in accomplishing this goal delivering a novel framework for use with littoral area marine vessel classification. The completed work is divided and presented in two separate papers written specifically for submission to and publication at appropriate conferences. When fully integrated with computer vision techniques, the database methodology and ideas presented in this thesis research will help to provide a vital new level of security in the littoral areas around the world

    Air Force Institute of Technology Research Report 2013

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Predictive modelling : flight delays and associated factors hartsfield–Jackson Atlanta international airport

    Get PDF
    Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceAtualmente, um ponto negativo nas viagens de avião são os atrasos que, constantemente, são anunciados aos passageiros resultando numa diminuição da sua satisfação enquanto clientes. Este e outros fatores fazem com que elevados custos, tanto quantitativos como qualitativos sejam imputados às companhias. Consequentemente, existe a necessidade de prever e mitigar a existência de atrasos aéreos que pode ajudar as companhias aéreas bem como aeroportos a melhorar a sua performance e a aplicar algumas medidas, dirigidas ao consumidor, que permitiam atenuar ou até anular o efeito que estes atrasos provoca nos seus passageiros. Deste modo, este estudo tem como principal objetivo prever a ocorrência de atrasos nas chegadas ao aeroporto internacional de Hartsfield-Jackson. Esta estimativa será possível através da elaboração de um modelo preditivo, recorrendo a diversas técnicas de Data Mining. Com a aplicação destas técnicas, foi possível identificar as variáveis que mais contribuíram para a existência do atraso. No desenvolvimento deste trabalho, foi seguida a metodologia da descoberta de conhecimento em base de dados (conhecida em inglês por Knowledge Discovery Database, KDD). Fases como a recolha dos dados, a aplicação de técnicas de amostragem (SMOTE e Undersampling), a partição dos dados em treino e teste, o pré-processamento (dados omissos e outliers) e transformação dos dados (normalização dos dados e seleção de atributos), a definição de modelos a treinar (Decision Trees, Random Forest e Multilayer Perceptron) bem como a avaliação da performance dos modelos através de métricas variadas foram aplicadas. Depois de testar diferentes abordagens, concluiu-se que o melhor modelo é alcançado com as variáveis relacionadas com a partida, usando o algoritmo Multilayer Perceptron e aplicando a técnica de SMOTE para lidar com dados não balanceados, removendo outliers e selecionando dez variáveis usando GainRatio. Por outro lado, quando as variáveis com informação da partida são excluídas, o algoritmo que melhor se destaca é o Multilayer Perceptron usando a técnica SMOTE, mas desta vez, incluindo os outliers e com quinze variáveis selecionadas novamente pelo GainRatio. Em ambas as hipóteses, as variáveis explicativas que mais contribuem para a existência do atraso na chegada são relacionadas com o clima, com as características do avião e com a propagação do atraso. Os resultados do algoritmo de Random Forests mostraram melhor desempenho, em relação à precisão, em comparação com outros autores (Belcastro, Marozzo, Talia, & Trunfio, 2016; Choi, Kim, Briceno, & Mavris, 2016). Contrariamente, o algoritmo Multilayer Perceptron, apresentou menor precisão em comparação com outro estudo equivalente (Y. J. Kim, Choi, Briceno, & Mavris, 2016).Nowadays, a downside to traveling is the delays that are constantly advertised to passengers resulting in a decrease in customer satisfaction. These delays associated with other factors can cause costs, both quantitative and qualitative. Consequently, there is a need to anticipate and mitigate the existence of airborne delays that can help airlines and airports improving their performance or even take some consumer-oriented measures that can undo or attenuate the effect that these delays have on their passengers. This study has as primary objective to predict the occurrence of arrival delays of the international airport of Hartsfield-Jackson. It was possible by building a predictive model, applying several Data Mining techniques. With these applications, it was possible to show the variables, among the proposals, that most contributed to the existence of the delay. In this work, the Knowledge Discovery Database (KDD) methodology was followed. Phases such as data collection; sampling techniques (SMOTE and Undersampling); Data partitioning in training and testing; Pre-processing (missing data and outliers) and data transformation (data normalization and attribute selection); And, finally the definition of models to be trained (Decision Trees, Random Forests, and Multilayer Perceptron), as well as the evaluation of the performance of the models through varied metrics, were used. After testing different approaches, it was concluded that the best model is achieved with the variables related to departure, using the Multilayer Perceptron algorithm and applying SMOTE to deal with unbalanced data, removing outliers and selecting ten variables using GainRatio. On the other hand, when the variables with information of the departure are excluded, the algorithm that performs best is also the Multilayer Perceptron using the SMOTE technique but, this time, including the outliers and with fifteen variables selected again by the GainRatio. On both hypotheses, the explanatory variables that most contributed to the existence of the delay in arrivals were related to the weather, the airplane characteristics and the propagation of the delay. Our results for the Random Forests algorithm shown better performance, regarding accuracy, compared to other authors (Belcastro et al., 2016; Choi et al., 2016). Contrary, for the Multilayer Perceptron algorithm, was presented a lower accuracy compared to another equivalent study (Y. J. Kim et al., 2016)

    Central Florida Future, Vol. 37 No. 26, November 11, 2004

    Get PDF
    Frankenstein brings Library to life: Monster exhibit pairs literature modern science; Citrus lots squeezing parking cash; Distorted male image: Researchers say chiseled models sell ads shatter male self-worth; Cornerstone: Bear Care 101: Class project raises cash and awareness for battered animals.https://stars.library.ucf.edu/centralfloridafuture/2790/thumbnail.jp

    Air Force Institute of Technology Research Report 2009

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Air Force Institute of Technology Research Report 2015

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Air Force Institute of Technology Research Report 2015

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Data Analytics and Machine Learning to Enhance the Operational Visibility and Situation Awareness of Smart Grid High Penetration Photovoltaic Systems

    Get PDF
    Electric utilities have limited operational visibility and situation awareness over grid-tied distributed photovoltaic systems (PV). This will pose a risk to grid stability when the PV penetration into a given feeder exceeds 60% of its peak or minimum daytime load. Third-party service providers offer only real-time monitoring but not accurate insights into system performance and prediction of productions. PV systems also increase the attack surface of distribution networks since they are not under the direct supervision and control of the utility security analysts. Six key objectives were successfully achieved to enhance PV operational visibility and situation awareness: (1) conceptual cybersecurity frameworks for PV situation awareness at device, communications, applications, and cognitive levels; (2) a unique combinatorial approach using LASSO-Elastic Net regularizations and multilayer perceptron for PV generation forecasting; (3) applying a fixed-point primal dual log-barrier interior point method to expedite AC optimal power flow convergence; (4) adapting big data standards and capability maturity models to PV systems; (5) using K-nearest neighbors and random forests to impute missing values in PV big data; and (6) a hybrid data-model method that takes PV system deration factors and historical data to estimate generation and evaluate system performance using advanced metrics. These objectives were validated on three real-world case studies comprising grid-tied commercial PV systems. The results and conclusions show that the proposed imputation approach improved the accuracy by 91%, the estimation method performed better by 75% and 10% for two PV systems, and the use of the proposed forecasting model improved the generalization performance and reduced the likelihood of overfitting. The application of primal dual log-barrier interior point method improved the convergence of AC optimal power flow by 0.7 and 0.6 times that of the currently used deterministic models. Through the use of advanced performance metrics, it is shown how PV systems of different nameplate capacities installed at different geographical locations can be directly evaluated and compared over both instantaneous as well as extended periods of time. The results of this dissertation will be of particular use to multiple stakeholders of the PV domain including, but not limited to, the utility network and security operation centers, standards working groups, utility equipment, and service providers, data consultants, system integrator, regulators and public service commissions, government bodies, and end-consumers

    Air Force Institute of Technology Research Report 2014

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics
    • …
    corecore