193 research outputs found

    Cost Automata, Safe Schemes, and Downward Closures

    Get PDF
    Higher-order recursion schemes are an expressive formalism used to define languages of possibly infinite ranked trees. They extend regular and context-free grammars, and are equivalent to simply typed ?Y-calculus and collapsible pushdown automata. In this work we prove, under a syntactical constraint called safety, decidability of the model-checking problem for recursion schemes against properties defined by alternating B-automata, an extension of alternating parity automata for infinite trees with a boundedness acceptance condition. We then exploit this result to show how to compute downward closures of languages of finite trees recognized by safe recursion schemes

    A Type-Directed Negation Elimination

    Full text link
    In the modal mu-calculus, a formula is well-formed if each recursive variable occurs underneath an even number of negations. By means of De Morgan's laws, it is easy to transform any well-formed formula into an equivalent formula without negations -- its negation normal form. Moreover, if the formula is of size n, its negation normal form of is of the same size O(n). The full modal mu-calculus and the negation normal form fragment are thus equally expressive and concise. In this paper we extend this result to the higher-order modal fixed point logic (HFL), an extension of the modal mu-calculus with higher-order recursive predicate transformers. We present a procedure that converts a formula into an equivalent formula without negations of quadratic size in the worst case and of linear size when the number of variables of the formula is fixed.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Higher-Order Model Checking Step by Step

    Get PDF
    We show a new simple algorithm that solves the model-checking problem for recursion schemes: check whether the tree generated by a given higher-order recursion scheme is accepted by a given alternating parity automaton. The algorithm amounts to a procedure that transforms a recursion scheme of order n to a recursion scheme of order n-1, preserving acceptance, and increasing the size only exponentially. After repeating the procedure n times, we obtain a recursion scheme of order 0, for which the problem boils down to solving a finite parity game. Since the size grows exponentially at each step, the overall complexity is n-EXPTIME, which is known to be optimal. More precisely, the transformation is linear in the size of the recursion scheme, assuming that the arity of employed nonterminals and the size of the automaton are bounded by a constant; this results in an FPT algorithm for the model-checking problem. Our transformation is a generalization of a previous transformation of the author (2020), working for reachability automata in place of parity automata. The step-by-step approach can be opposed to previous algorithms solving the considered problem "in one step", being compulsorily more complicated

    Recursion Schemes and the WMSO+U Logic

    Get PDF
    We study the weak MSO logic extended by the unbounding quantifier (WMSO+U), expressing the fact that there exist arbitrarily large finite sets satisfying a given property. We prove that it is decidable whether the tree generated by a given higher-order recursion scheme satisfies a given sentence of WMSO+U

    Probabilistic Mu-Calculus: Decidability and Complete Axiomatization

    Get PDF
    We introduce a version of the probabilistic mu-calculus (PMC) built on top of a probabilistic modal logic that allows encoding n-ary inequational conditions on transition probabilities. PMC extends previously studied calculi and we prove that, despite its expressiveness, it enjoys a series of good meta-properties. Firstly, we prove the decidability of satisfiability checking by establishing the small model property. An algorithm for deciding the satisfiability problem is developed. As a second major result, we provide a complete axiomatization for the alternation-free fragment of PMC. The completeness proof is innovative in many aspects combining various techniques from topology and model theory

    MALL proof equivalence is Logspace-complete, via binary decision diagrams

    Get PDF
    Proof equivalence in a logic is the problem of deciding whether two proofs are equivalent modulo a set of permutation of rules that reflects the commutative conversions of its cut-elimination procedure. As such, it is related to the question of proofnets: finding canonical representatives of equivalence classes of proofs that have good computational properties. It can also be seen as the word problem for the notion of free category corresponding to the logic. It has been recently shown that proof equivalence in MLL (the multiplicative with units fragment of linear logic) is PSPACE-complete, which rules out any low-complexity notion of proofnet for this particular logic. Since it is another fragment of linear logic for which attempts to define a fully satisfactory low-complexity notion of proofnet have not been successful so far, we study proof equivalence in MALL- (multiplicative-additive without units fragment of linear logic) and discover a situation that is totally different from the MLL case. Indeed, we show that proof equivalence in MALL- corresponds (under AC0 reductions) to equivalence of binary decision diagrams, a data structure widely used to represent and analyze Boolean functions efficiently. We show these two equivalent problems to be LOGSPACE-complete. If this technically leaves open the possibility for a complete solution to the question of proofnets for MALL-, the established relation with binary decision diagrams actually suggests a negative solution to this problem.Comment: in TLCA 201

    Higher-Order Nonemptiness Step by Step

    Get PDF
    We show a new simple algorithm that checks whether a given higher-order grammar generates a nonempty language of trees. The algorithm amounts to a procedure that transforms a grammar of order n to a grammar of order n-1, preserving nonemptiness, and increasing the size only exponentially. After repeating the procedure n times, we obtain a grammar of order 0, whose nonemptiness can be easily checked. Since the size grows exponentially at each step, the overall complexity is n-EXPTIME, which is known to be optimal. More precisely, the transformation (and hence the whole algorithm) is linear in the size of the grammar, assuming that the arity of employed nonterminals is bounded by a constant. The same algorithm allows to check whether an infinite tree generated by a higher-order recursion scheme is accepted by an alternating safety (or reachability) automaton, because this question can be reduced to the nonemptiness problem by taking a product of the recursion scheme with the automaton. A proof of correctness of the algorithm is formalised in the proof assistant Coq. Our transformation is motivated by a similar transformation of Asada and Kobayashi (2020) changing a word grammar of order n to a tree grammar of order n-1. The step-by-step approach can be opposed to previous algorithms solving the nonemptiness problem "in one step", being compulsorily more complicated

    Canonization for Bounded and Dihedral Color Classes in Choiceless Polynomial Time

    Get PDF
    In the quest for a logic capturing Ptime the next natural classes of structures to consider are those with bounded color class size. We present a canonization procedure for graphs with dihedral color classes of bounded size in the logic of Choiceless Polynomial Time (CPT), which then captures Ptime on this class of structures. This is the first result of this form for non-abelian color classes. The first step proposes a normal form which comprises a "rigid assemblage". This roughly means that the local automorphism groups form 2-injective 3-factor subdirect products. Structures with color classes of bounded size can be reduced canonization preservingly to normal form in CPT. In the second step, we show that for graphs in normal form with dihedral color classes of bounded size, the canonization problem can be solved in CPT. We also show the same statement for general ternary structures in normal form if the dihedral groups are defined over odd domains

    Algebra and the Complexity of Digraph CSPs: a Survey

    Get PDF
    We present a brief survey of some of the key results on the interplay between algebraic and graph-theoretic methods in the study of the complexity of digraph-based constraint satisfaction problems
    • …
    corecore