711 research outputs found

    SDDs are Exponentially More Succinct than OBDDs

    Full text link
    Introduced by Darwiche (2011), sentential decision diagrams (SDDs) are essentially as tractable as ordered binary decision diagrams (OBDDs), but tend to be more succinct in practice. This makes SDDs a prominent representation language, with many applications in artificial intelligence and knowledge compilation. We prove that SDDs are more succinct than OBDDs also in theory, by constructing a family of boolean functions where each member has polynomial SDD size but exponential OBDD size. This exponential separation improves a quasipolynomial separation recently established by Razgon (2013), and settles an open problem in knowledge compilation

    Contextual Dictionary Lookup for Knowledge Graph Completion

    Full text link
    Knowledge graph completion (KGC) aims to solve the incompleteness of knowledge graphs (KGs) by predicting missing links from known triples, numbers of knowledge graph embedding (KGE) models have been proposed to perform KGC by learning embeddings. Nevertheless, most existing embedding models map each relation into a unique vector, overlooking the specific fine-grained semantics of them under different entities. Additionally, the few available fine-grained semantic models rely on clustering algorithms, resulting in limited performance and applicability due to the cumbersome two-stage training process. In this paper, we present a novel method utilizing contextual dictionary lookup, enabling conventional embedding models to learn fine-grained semantics of relations in an end-to-end manner. More specifically, we represent each relation using a dictionary that contains multiple latent semantics. The composition of a given entity and the dictionary's central semantics serves as the context for generating a lookup, thus determining the fine-grained semantics of the relation adaptively. The proposed loss function optimizes both the central and fine-grained semantics simultaneously to ensure their semantic consistency. Besides, we introduce two metrics to assess the validity and accuracy of the dictionary lookup operation. We extend several KGE models with the method, resulting in substantial performance improvements on widely-used benchmark datasets

    Multi-Goal Multi-Agent Path Finding via Decoupled and Integrated Goal Vertex Ordering

    Full text link
    We introduce multi-goal multi agent path finding (MAPFMG^{MG}) which generalizes the standard discrete multi-agent path finding (MAPF) problem. While the task in MAPF is to navigate agents in an undirected graph from their starting vertices to one individual goal vertex per agent, MAPFMG^{MG} assigns each agent multiple goal vertices and the task is to visit each of them at least once. Solving MAPFMG^{MG} not only requires finding collision free paths for individual agents but also determining the order of visiting agent's goal vertices so that common objectives like the sum-of-costs are optimized. We suggest two novel algorithms using different paradigms to address MAPFMG^{MG}: a heuristic search-based search algorithm called Hamiltonian-CBS (HCBS) and a compilation-based algorithm built using the SMT paradigm, called SMT-Hamiltonian-CBS (SMT-HCBS). Experimental comparison suggests limitations of compilation-based approach

    Multilingual Knowledge Base Completion by Cross-lingual Semantic Relation Inference

    Get PDF
    International audienceIn the present paper, we propose a simple en-dogenous method for enhancing a multilingual knowledge base through the cross-lingual semantic relation inference. It can be run on multilingual resources prior to semantic representation learning. Multilingual knowledge bases may integrate preexisting structured resources available for resource-rich languages. We aim at performing cross-lingual inference on them to improve the low resource language by creating semantic relationships

    A Call for Standardization and Validation of Text Style Transfer Evaluation

    Full text link
    Text Style Transfer (TST) evaluation is, in practice, inconsistent. Therefore, we conduct a meta-analysis on human and automated TST evaluation and experimentation that thoroughly examines existing literature in the field. The meta-analysis reveals a substantial standardization gap in human and automated evaluation. In addition, we also find a validation gap: only few automated metrics have been validated using human experiments. To this end, we thoroughly scrutinize both the standardization and validation gap and reveal the resulting pitfalls. This work also paves the way to close the standardization and validation gap in TST evaluation by calling out requirements to be met by future research.Comment: Accepted to Findings of ACL 202

    Ask, and shall you receive?: Understanding Desire Fulfillment in Natural Language Text

    Full text link
    The ability to comprehend wishes or desires and their fulfillment is important to Natural Language Understanding. This paper introduces the task of identifying if a desire expressed by a subject in a given short piece of text was fulfilled. We propose various unstructured and structured models that capture fulfillment cues such as the subject's emotional state and actions. Our experiments with two different datasets demonstrate the importance of understanding the narrative and discourse structure to address this task
    corecore