257 research outputs found

    Exact Distance Oracles for Planar Graphs with Failing Vertices

    Full text link
    We consider exact distance oracles for directed weighted planar graphs in the presence of failing vertices. Given a source vertex uu, a target vertex vv and a set XX of kk failed vertices, such an oracle returns the length of a shortest uu-to-vv path that avoids all vertices in XX. We propose oracles that can handle any number kk of failures. More specifically, for a directed weighted planar graph with nn vertices, any constant kk, and for any q[1,n]q \in [1,\sqrt n], we propose an oracle of size O~(nk+3/2q2k+1)\tilde{\mathcal{O}}(\frac{n^{k+3/2}}{q^{2k+1}}) that answers queries in O~(q)\tilde{\mathcal{O}}(q) time. In particular, we show an O~(n)\tilde{\mathcal{O}}(n)-size, O~(n)\tilde{\mathcal{O}}(\sqrt{n})-query-time oracle for any constant kk. This matches, up to polylogarithmic factors, the fastest failure-free distance oracles with nearly linear space. For single vertex failures (k=1k=1), our O~(n5/2q3)\tilde{\mathcal{O}}(\frac{n^{5/2}}{q^3})-size, O~(q)\tilde{\mathcal{O}}(q)-query-time oracle improves over the previously best known tradeoff of Baswana et al. [SODA 2012] by polynomial factors for q=Ω(nt)q = \Omega(n^t), t(1/4,1/2]t \in (1/4,1/2]. For multiple failures, no planarity exploiting results were previously known

    A Simple Algorithm for Approximating the Text-To-Pattern Hamming Distance

    Get PDF
    The algorithmic task of computing the Hamming distance between a given pattern of length m and each location in a text of length n, both over a general alphabet Sigma, is one of the most fundamental algorithmic tasks in string algorithms. The fastest known runtime for exact computation is tilde O(nsqrt m). We recently introduced a complicated randomized algorithm for obtaining a (1 +/- eps) approximation for each location in the text in O( (n/eps) log(1/eps) log n log m log |Sigma|) total time, breaking a barrier that stood for 22 years. In this paper, we introduce an elementary and simple randomized algorithm that takes O((n/eps) log n log m) time

    When Algorithms for Maximal Independent Set and Maximal Matching Run in Sublinear Time

    Get PDF
    Maximal independent set (MIS), maximal matching (MM), and (Delta+1)-(vertex) coloring in graphs of maximum degree Delta are among the most prominent algorithmic graph theory problems. They are all solvable by a simple linear-time greedy algorithm and up until very recently this constituted the state-of-the-art. In SODA 2019, Assadi, Chen, and Khanna gave a randomized algorithm for (Delta+1)-coloring that runs in O~(n sqrt{n}) time, which even for moderately dense graphs is sublinear in the input size. The work of Assadi et al. however contained a spoiler for MIS and MM: neither problems provably admits a sublinear-time algorithm in general graphs. In this work, we dig deeper into the possibility of achieving sublinear-time algorithms for MIS and MM. The neighborhood independence number of a graph G, denoted by beta(G), is the size of the largest independent set in the neighborhood of any vertex. We identify beta(G) as the "right" parameter to measure the runtime of MIS and MM algorithms: Although graphs of bounded neighborhood independence may be very dense (clique is one example), we prove that carefully chosen variants of greedy algorithms for MIS and MM run in O(n beta(G)) and O(n log{n} * beta(G)) time respectively on any n-vertex graph G. We complement this positive result by observing that a simple extension of the lower bound of Assadi et al. implies that Omega(n beta(G)) time is also necessary for any algorithm to either problem for all values of beta(G) from 1 to Theta(n). We note that our algorithm for MIS is deterministic while for MM we use randomization which we prove is unavoidable: any deterministic algorithm for MM requires Omega(n^2) time even for beta(G) = 2. Graphs with bounded neighborhood independence, already for constant beta = beta(G), constitute a rich family of possibly dense graphs, including line graphs, proper interval graphs, unit-disk graphs, claw-free graphs, and graphs of bounded growth. Our results suggest that even though MIS and MM do not admit sublinear-time algorithms in general graphs, one can still solve both problems in sublinear time for a wide range of beta(G) << n. Finally, by observing that the lower bound of Omega(n sqrt{n}) time for (Delta+1)-coloring due to Assadi et al. applies to graphs of (small) constant neighborhood independence, we unveil an intriguing separation between the time complexity of MIS and MM, and that of (Delta+1)-coloring: while the time complexity of MIS and MM is strictly higher than that of (Delta+1) coloring in general graphs, the exact opposite relation holds for graphs with small neighborhood independence

    An Optimal Algorithm for Large Frequency Moments Using O(n^(1-2/k)) Bits

    Get PDF
    In this paper, we provide the first optimal algorithm for the remaining open question from the seminal paper of Alon, Matias, and Szegedy: approximating large frequency moments. We give an upper bound on the space required to find a k-th frequency moment of O(n^(1-2/k)) bits that matches, up to a constant factor, the lower bound of Woodruff et. al for constant epsilon and constant k. Our algorithm makes a single pass over the stream and works for any constant k > 3. It is based upon two major technical accomplishments: first, we provide an optimal algorithm for finding the heavy elements in a stream; and second, we provide a technique using Martingale Sketches which gives an optimal reduction of the large frequency moment problem to the all heavy elements problem. We also provide a polylogarithmic improvement for frequency moments, frequency based functions, spatial data streams, and measuring independence of data sets

    Multi-Party Protocols, Information Complexity and Privacy

    Get PDF
    We introduce the new measure of Public Information Complexity (PIC), as a tool for the study of multi-party computation protocols, and of quantities such as their communication complexity, or the amount of randomness they require in the context of information-theoretic private computations. We are able to use this measure directly in the natural asynchronous message-passing peer-to-peer model and show a number of interesting properties and applications of our new notion: the Public Information Complexity is a lower bound on the Communication Complexity and an upper bound on the Information Complexity; the difference between the Public Information Complexity and the Information Complexity provides a lower bound on the amount of randomness used in a protocol; any communication protocol can be compressed to its Public Information Cost; an explicit calculation of the zero-error Public Information Complexity of the k-party, n-bit Parity function, where a player outputs the bit-wise parity of the inputs. The latter result establishes that the amount of randomness needed for a private protocol that computes this function is Omega(n)

    Near-Optimal UGC-hardness of Approximating Max k-CSP_R

    Get PDF
    In this paper, we prove an almost-optimal hardness for Max kk-CSPR_R based on Khot's Unique Games Conjecture (UGC). In Max kk-CSPR_R, we are given a set of predicates each of which depends on exactly kk variables. Each variable can take any value from 1,2,,R1, 2, \dots, R. The goal is to find an assignment to variables that maximizes the number of satisfied predicates. Assuming the Unique Games Conjecture, we show that it is NP-hard to approximate Max kk-CSPR_R to within factor 2O(klogk)(logR)k/2/Rk12^{O(k \log k)}(\log R)^{k/2}/R^{k - 1} for any k,Rk, R. To the best of our knowledge, this result improves on all the known hardness of approximation results when 3k=o(logR/loglogR)3 \leq k = o(\log R/\log \log R). In this case, the previous best hardness result was NP-hardness of approximating within a factor O(k/Rk2)O(k/R^{k-2}) by Chan. When k=2k = 2, our result matches the best known UGC-hardness result of Khot, Kindler, Mossel and O'Donnell. In addition, by extending an algorithm for Max 2-CSPR_R by Kindler, Kolla and Trevisan, we provide an Ω(logR/Rk1)\Omega(\log R/R^{k - 1})-approximation algorithm for Max kk-CSPR_R. This algorithm implies that our inapproximability result is tight up to a factor of 2O(klogk)(logR)k/212^{O(k \log k)}(\log R)^{k/2 - 1}. In comparison, when 3k3 \leq k is a constant, the previously known gap was O(R)O(R), which is significantly larger than our gap of O(polylog R)O(\text{polylog } R). Finally, we show that we can replace the Unique Games Conjecture assumption with Khot's dd-to-1 Conjecture and still get asymptotically the same hardness of approximation
    corecore