29 research outputs found

    Sequential and parallel solution-biased search for subgraph algorithms

    Get PDF
    Funding: This work was supported by the Engineering and Physical Sciences Research Council (grant numbers EP/P026842/1, EP/M508056/1, and EP/N007565).The current state of the art in subgraph isomorphism solving involves using degree as a value-ordering heuristic to direct backtracking search. Such a search makes a heavy commitment to the first branching choice, which is often incorrect. To mitigate this, we introduce and evaluate a new approach, which we call “solution-biased search”. By combining a slightly-random value-ordering heuristic, rapid restarts, and nogood recording, we design an algorithm which instead uses degree to direct the proportion of search effort spent in different subproblems. This increases performance by two orders of magnitude on satisfiable instances, whilst not affecting performance on unsatisfiable instances. This algorithm can also be parallelised in a very simple but effective way: across both satisfiable and unsatisfiable instances, we get a further speedup of over thirty from thirty-six cores, and over one hundred from ten distributed-memory hosts. Finally, we show that solution-biased search is also suitable for optimisation problems, by using it to improve two maximum common induced subgraph algorithms.Postprin

    Automatic Classification of Text Databases through Query Probing

    Get PDF
    Many text databases on the web are "hidden" behind search interfaces, and their documents are only accessible through querying. Search engines typically ignore the contents of such search-only databases. Recently, Yahoo-like directories have started to manually organize these databases into categories that users can browse to find these valuable resources. We propose a novel strategy to automate the classification of search-only text databases. Our technique starts by training a rule-based document classifier, and then uses the classifier's rules to generate probing queries. The queries are sent to the text databases, which are then classified based on the number of matches that they produce for each query. We report some initial exploratory experiments that show that our approach is promising to automatically characterize the contents of text databases accessible on the web.Comment: 7 pages, 1 figur

    Natural Language Interfaces for Tabular Data Querying and Visualization: A Survey

    Full text link
    The emergence of natural language processing has revolutionized the way users interact with tabular data, enabling a shift from traditional query languages and manual plotting to more intuitive, language-based interfaces. The rise of large language models (LLMs) such as ChatGPT and its successors has further advanced this field, opening new avenues for natural language processing techniques. This survey presents a comprehensive overview of natural language interfaces for tabular data querying and visualization, which allow users to interact with data using natural language queries. We introduce the fundamental concepts and techniques underlying these interfaces with a particular emphasis on semantic parsing, the key technology facilitating the translation from natural language to SQL queries or data visualization commands. We then delve into the recent advancements in Text-to-SQL and Text-to-Vis problems from the perspectives of datasets, methodologies, metrics, and system designs. This includes a deep dive into the influence of LLMs, highlighting their strengths, limitations, and potential for future improvements. Through this survey, we aim to provide a roadmap for researchers and practitioners interested in developing and applying natural language interfaces for data interaction in the era of large language models.Comment: 20 pages, 4 figures, 5 tables. Submitted to IEEE TKD

    On Maximum Weight Clique Algorithms, and How They Are Evaluated

    Get PDF
    Maximum weight clique and maximum weight independent set solvers are often benchmarked using maximum clique problem instances, with weights allocated to vertices by taking the vertex number mod 200 plus 1. For constraint programming approaches, this rule has clear implications, favouring weight-based rather than degree-based heuristics. We show that similar implications hold for dedicated algorithms, and that additionally, weight distributions affect whether certain inference rules are cost-effective. We look at other families of benchmark instances for the maximum weight clique problem, coming from winner determination problems, graph colouring, and error-correcting codes, and introduce two new families of instances, based upon kidney exchange and the Research Excellence Framework. In each case the weights carry much more interesting structure, and do not in any way resemble the 200 rule. We make these instances available in the hopes of improving the quality of future experiments

    Inductive logic programming at 30: a new introduction

    Full text link
    Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to induce a hypothesis (a set of logical rules) that generalises training examples. As ILP turns 30, we provide a new introduction to the field. We introduce the necessary logical notation and the main learning settings; describe the building blocks of an ILP system; compare several systems on several dimensions; describe four systems (Aleph, TILDE, ASPAL, and Metagol); highlight key application areas; and, finally, summarise current limitations and directions for future research.Comment: Paper under revie

    Adaptive search techniques in AI planning and heuristic search

    Get PDF
    State-space search is a common approach to solve problems appearing in artificial intelligence and other subfields of computer science. In such problems, an agent must find a sequence of actions leading from an initial state to a goal state. However, the state spaces of practical applications are often too large to explore exhaustively. Hence, heuristic functions that estimate the distance to a goal state (such as straight-line distance for navigation tasks) are used to guide the search more effectively. Heuristic search is typically viewed as a static process. The heuristic function is assumed to be unchanged throughout the search, and its resulting values are directly used for guidance without applying any further reasoning to them. Yet critical aspects of the task may only be discovered during the search, e.g., regions of the state space where the heuristic does not yield reliable values. Our work here aims to make this process more dynamic, allowing the search to adapt to such observations. One form of adaptation that we consider is online refinement of the heuristic function. We design search algorithms that detect weaknesses in the heuristic, and address them with targeted refinement operations. If the heuristic converges to perfect estimates, this results in a secondary method of progress, causing search algorithms that are otherwise incomplete to eventually find a solution. We also consider settings that inherently require adaptation: In online replanning, a plan that is being executed must be amended for changes in the environment. Similarly, in real-time search, an agent must act under strict time constraints with limited information. The search algorithms we introduce in this work share a common pattern of online adaptation, allowing them to effectively react to challenges encountered during the search. We evaluate our contributions on a wide range of standard benchmarks. Our results show that the flexibility of these algorithms makes them more robust than traditional approaches, and they often yield substantial improvements over current state-of-the-art planners.Die Zustandsraumsuche ist ein oft verwendeter Ansatz um verschiedene Probleme zu lösen, die in der Künstlichen Intelligenz und anderen Bereichen der Informatik auftreten. Dabei muss ein Akteur eine Folge von Aktionen finden, die einen Pfad von einem Startzustand zu einem Zielzustand bilden. Die Zustandsräume von praktischen Anwendungen sind häufig zu groß um sie vollständig zu durchsuchen. Aus diesem Grund leitet man die Suche mit Heuristiken, die die Distanz zu einem Zielzustand abschätzen; zum Beispiel lässt sich die Luftliniendistanz als Heuristik für Navigationsprobleme einsetzen. Heuristische Suche wird typischerweise als statischer Prozess angesehen. Man nimmt an, dass die Heuristik während der Suche eine unveränderte Funktion ist, und die resultierenden Werte werden direkt zur Leitung der Suche benutzt ohne weitere Logik darauf anzuwenden. Jedoch könnten kritische Aspekte des Problems erst im Laufe der Suche erkannt werden, wie zum Beispiel Bereiche des Zustandsraums in denen die Heuristik keine verlässlichen Abschätzungen liefert. In dieser Arbeit wird der Suchprozess dynamischer gestaltet und der Suche ermöglicht sich solchen Beobachtungen anzupassen. Eine Art dieser Anpassung ist die Onlineverbesserung der Heuristik. Es werden Suchalgorithmen entwickelt, die Schwächen in der Heuristik erkennen und mit gezielten Verbesserungsoperationen beheben. Wenn die Heuristik zu perfekten Werten konvergiert ergibt sich daraus eine zusätzliche Form von Fortschritt, wodurch auch Suchalgorithmen, die sonst unvollständig sind, garantiert irgendwann eine Lösung finden werden. Es werden auch Szenarien betrachtet, die schon von sich aus Anpassung erfordern: In der Onlineumplanung muss ein Plan, der gerade ausgeführt wird, auf Änderungen in der Umgebung angepasst werden. Ähnlich dazu muss sich ein Akteur in der Echtzeitsuche unter strengen Zeitauflagen und mit eingeschränkten Informationen bewegen. Die Suchalgorithmen, die in dieser Arbeit eingeführt werden, folgen einem gemeinsamen Muster von Onlineanpassung, was ihnen ermöglicht effektiv auf Herausforderungen zu reagieren die im Verlauf der Suche aufkommen. Diese Ansätze werden auf einer breiten Reihe von Benchmarks ausgewertet. Die Ergebnisse zeigen, dass die Flexibilität dieser Algorithmen zu erhöhter Zuverlässigkeit im Vergleich zu traditionellen Ansätzen führt, und es werden oft deutliche Verbesserungen gegenüber modernen Planungssystemen erzielt.DFG grant 389792660 as part of TRR 248 – CPEC (see https://perspicuous-computing.science), and DFG grant HO 2169/5-1, "Critically Constrained Planning via Partial Delete Relaxation

    Benign Overfitting in Classification: Provably Counter Label Noise with Larger Models

    Full text link
    Studies on benign overfitting provide insights for the success of overparameterized deep learning models. In this work, we examine whether overfitting is truly benign in real-world classification tasks. We start with the observation that a ResNet model overfits benignly on Cifar10 but not benignly on ImageNet. To understand why benign overfitting fails in the ImageNet experiment, we theoretically analyze benign overfitting under a more restrictive setup where the number of parameters is not significantly larger than the number of data points. Under this mild overparameterization setup, our analysis identifies a phase change: unlike in the previous heavy overparameterization settings, benign overfitting can now fail in the presence of label noise. Our analysis explains our empirical observations, and is validated by a set of control experiments with ResNets. Our work highlights the importance of understanding implicit bias in underfitting regimes as a future direction.Comment: Published as a conference paper at ICLR 202

    Generalising weighted model counting

    Get PDF
    Given a formula in propositional or (finite-domain) first-order logic and some non-negative weights, weighted model counting (WMC) is a function problem that asks to compute the sum of the weights of the models of the formula. Originally used as a flexible way of performing probabilistic inference on graphical models, WMC has found many applications across artificial intelligence (AI), machine learning, and other domains. Areas of AI that rely on WMC include explainable AI, neural-symbolic AI, probabilistic programming, and statistical relational AI. WMC also has applications in bioinformatics, data mining, natural language processing, prognostics, and robotics. In this work, we are interested in revisiting the foundations of WMC and considering generalisations of some of the key definitions in the interest of conceptual clarity and practical efficiency. We begin by developing a measure-theoretic perspective on WMC, which suggests a new and more general way of defining the weights of an instance. This new representation can be as succinct as standard WMC but can also expand as needed to represent less-structured probability distributions. We demonstrate the performance benefits of the new format by developing a novel WMC encoding for Bayesian networks. We then show how existing WMC encodings for Bayesian networks can be transformed into this more general format and what conditions ensure that the transformation is correct (i.e., preserves the answer). Combining the strengths of the more flexible representation with the tricks used in existing encodings yields further efficiency improvements in Bayesian network probabilistic inference. Next, we turn our attention to the first-order setting. Here, we argue that the capabilities of practical model counting algorithms are severely limited by their inability to perform arbitrary recursive computations. To enable arbitrary recursion, we relax the restrictions that typically accompany domain recursion and generalise circuits (used to express a solution to a model counting problem) to graphs that are allowed to have cycles. These improvements enable us to find efficient solutions to counting fundamental structures such as injections and bijections that were previously unsolvable by any available algorithm. The second strand of this work is concerned with synthetic data generation. Testing algorithms across a wide range of problem instances is crucial to ensure the validity of any claim about one algorithm’s superiority over another. However, benchmarks are often limited and fail to reveal differences among the algorithms. First, we show how random instances of probabilistic logic programs (that typically use WMC algorithms for inference) can be generated using constraint programming. We also introduce a new constraint to control the independence structure of the underlying probability distribution and provide a combinatorial argument for the correctness of the constraint model. This model allows us to, for the first time, experimentally investigate inference algorithms on more than just a handful of instances. Second, we introduce a random model for WMC instances with a parameter that influences primal treewidth—the parameter most commonly used to characterise the difficulty of an instance. We show that the easy-hard-easy pattern with respect to clause density is different for algorithms based on dynamic programming and algebraic decision diagrams than for all other solvers. We also demonstrate that all WMC algorithms scale exponentially with respect to primal treewidth, although at differing rates

    Technological roadmap on AI planning and scheduling

    Get PDF
    At the beginning of the new century, Information Technologies had become basic and indispensable constituents of the production and preparation processes for all kinds of goods and services and with that are largely influencing both the working and private life of nearly every citizen. This development will continue and even further grow with the continually increasing use of the Internet in production, business, science, education, and everyday societal and private undertaking. Recent years have shown, however, that a dramatic enhancement of software capabilities is required, when aiming to continuously provide advanced and competitive products and services in all these fast developing sectors. It includes the development of intelligent systems – systems that are more autonomous, flexible, and robust than today’s conventional software. Intelligent Planning and Scheduling is a key enabling technology for intelligent systems. It has been developed and matured over the last three decades and has successfully been employed for a variety of applications in commerce, industry, education, medicine, public transport, defense, and government. This document reviews the state-of-the-art in key application and technical areas of Intelligent Planning and Scheduling. It identifies the most important research, development, and technology transfer efforts required in the coming 3 to 10 years and shows the way forward to meet these challenges in the short-, medium- and longer-term future. The roadmap has been developed under the regime of PLANET – the European Network of Excellence in AI Planning. This network, established by the European Commission in 1998, is the co-ordinating framework for research, development, and technology transfer in the field of Intelligent Planning and Scheduling in Europe. A large number of people have contributed to this document including the members of PLANET non- European international experts, and a number of independent expert peer reviewers. All of them are acknowledged in a separate section of this document. Intelligent Planning and Scheduling is a far-reaching technology. Accepting the challenges and progressing along the directions pointed out in this roadmap will enable a new generation of intelligent application systems in a wide variety of industrial, commercial, public, and private sectors
    corecore