50 research outputs found

    The 14th Overture Workshop: Towards Analytical Tool Chains

    Get PDF
    This report contains the proceedings from the 14th Overture workshop organized in connection with the Formal Methods 2016 symposium. This includes nine papers describing different technological progress in relation to the Overture/VDM tool support and its connection with other tools such as Crescendo, Symphony, INTO-CPS, TASTE and ViennaTalk

    Relational Differential Dynamic Logic

    Get PDF
    International audienceIn the field of quality assurance of hybrid systems (that combine continuous physical dynamics and discrete digital control), Platzer's differential dynamic logic (dL) is widely recognized as a deductive verification method with solid mathematical foundations and sophisticated tool support. Motivated by benchmarks provided by our industry partner , we study a relational extension of dL, aiming to formally prove statements such as "an earlier deployment of the emergency brake decreases the collision speed." A main technical challenge here is to relate two states of two dynamics at different time points. Our main contribution is a theory of suitable relational differential invariants (a relational extension of differential invariants that are central proof methods in dL), and a derived technique of time stretching. The latter features particularly high applicability, since the user does not have to synthesize a relational differential invariant out of the air. We derive new inference rules for dL from these notions, and demonstrate their use over a couple of automotive case studies

    Proceedings of the Third Workshop on Formal Integrated Development Environment, F-IDE@FM 2016, Limassol, Cyprus, November 8, 2016

    No full text
    International audienceF-IDE 2016 is the third Formal Integrated Development Environment workshop (F-IDE 2016) held in Limassol, Cyprus, on November 8, 2016 as a satellite workshop of the FM conference.High levels of safety, security and also privacy standards require the use of formal methods to specify and develop compliant software (sub)systems. Any standard comes with an assessment process, which requires a complete documentation of the application in order to ease the justification of design choices and the review of code and proofs. An F-IDE dedicated to such developments should comply with several requirements. The first one is to associate a logical theory with a programming language, in a way that facilitates the tightly coupled handling of specification properties and program constructs. The second one is to offer a language/environment simple enough to be usable by most developers, even if they are not fully acquainted with higher-order logics or set theory, in particular by making development of proofs as easy as possible. The third one is to offer automated management of application documentation. It may also be expected that developments done with such an F-IDE are reusable and modular. Moreover, tools for testing and static analysis may be embedded in this F-IDE, to help address most steps of the assessment process. The workshop is a forum of exchange on different features related to F-IDEs.We solicited several kinds of contributions: research papers providing new concepts and results, position papers and research perspectives, experience reports, tool presentations. The current edition is a one-day workshop with eight communications, offering a large variety of approaches, techniques and tools. Some of the presentations took the form of a tool demonstration. Each submission was reviewed by three reviewers

    A Review of Verification and Validation for Space Autonomous Systems

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: registration 2021-05-13, accepted 2021-05-13, online 2021-06-18, pub-electronic 2021-06-18, pub-print 2021-09Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; doi: https://doi.org/10.13039/501100000266; Grant(s): EP/R026092/1Abstract: Purpose of Review: The deployment of hardware (e.g., robots, satellites, etc.) to space is a costly and complex endeavor. It is of extreme importance that on-board systems are verified and validated through a variety of verification and validation techniques, especially in the case of autonomous systems. In this paper, we discuss a number of approaches from the literature that are relevant or directly applied to the verification and validation of systems in space, with an emphasis on autonomy. Recent Findings: Despite advances in individual verification and validation techniques, there is still a lack of approaches that aim to combine different forms of verification in order to obtain system-wide verification of modular autonomous systems. Summary: This systematic review of the literature includes the current advances in the latest approaches using formal methods for static verification (model checking and theorem proving) and runtime verification, the progress achieved so far in the verification of machine learning, an overview of the landscape in software testing, and the importance of performing compositional verification in modular systems. In particular, we focus on reporting the use of these techniques for the verification and validation of systems in space with an emphasis on autonomy, as well as more general techniques (such as in the aeronautical domain) that have been shown to have potential value in the verification and validation of autonomous systems in space

    A Review of Verification and Validation for Space Autonomous Systems

    Get PDF
    Purpose of Review: The deployment of hardware (e.g., robots, satellites, etc.) to space is a costly and complex endeavor. It is of extreme importance that on-board systems are verified and validated through a variety of verification and validation techniques, especially in the case of autonomous systems. In this paper, we discuss a number of approaches from the literature that are relevant or directly applied to the verification and validation of systems in space, with an emphasis on autonomy. Recent Findings: Despite advances in individual verification and validation techniques, there is still a lack of approaches that aim to combine different forms of verification in order to obtain system-wide verification of modular autonomous systems. Summary: This systematic review of the literature includes the current advances in the latest approaches using formal methods for static verification (model checking and theorem proving) and runtime verification, the progress achieved so far in the verification of machine learning, an overview of the landscape in software testing, and the importance of performing compositional verification in modular systems. In particular, we focus on reporting the use of these techniques for the verification and validation of systems in space with an emphasis on autonomy, as well as more general techniques (such as in the aeronautical domain) that have been shown to have potential value in the verification and validation of autonomous systems in space

    Verification templates for the analysis of user interface software design

    Get PDF
    The paper describes templates for model-based analysis of usability and safety aspects of user interface software design. The templates crystallize general usability principles commonly addressed in user-centred safety requirements, such as the ability to undo user actions, the visibility of operational modes, and the predictability of user interface behavior. These requirements have standard forms across different application domains, and can be instantiated as properties of specific devices. The modeling and analysis process is carried out using the Prototype Verification System (PVS), and is further facilitated by structuring the specification of the device using a format that is designed to be generic across interactive systems. A concrete case study based on a commercial infusion pump is used to illustrate the approach. A detailed presentation of the automated verification process using PVS shows how failed proof attempts provide precise information about problematic user interface software features.This work has been funded by the EPSRC research grant EP/G059063/1: CHI+ MED (Computer-Human Interaction for Medical Devices). We are grateful to Harold Thimbleby's team at Swansea University, part of the CHI+ MED project, and especially Patrick Oladimeji who developed the infusion pump simulation that helped us develop the models. We also thank the anonymous reviewers for valuable feedback. Jose C. Campos and Paolo Masci were funded by project NORTE-01-0145-FEDER-000016, financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF)

    An Unexpected Journey: Towards Runtime Verification of Multiagent Systems and Beyond

    Get PDF
    The Trace Expression formalism derives from works started in 2012 and is mainly used to specify and verify interaction protocols at runtime, but other applications have been devised. More specically, this thesis describes how to extend and apply such formalism in the engineering process of distributed articial intelligence systems (such as Multiagent systems). This thesis extends the state of the art through four dierent contributions: 1. Theoretical: the thesis extends the original formalism in order to represent also parametric and probabilistic specications (parametric trace expressions and probabilistic trace expressions respectively). 2. Algorithmic: the thesis proposes algorithms for verifying trace expressions at runtime in a decentralized way. The algorithms have been designed to be as general as possible, but their implementation and experimentation address scenarios where the modelled and observed events are communicative events (interactions) inside a multiagent system. 3. Application: the thesis analyzes the relations between runtime and static verication (e.g. model checking) proposing hybrid integrations in both directions. First of all, the thesis proposes a trace expression model checking approach where it shows how to statically verify LTL property on a trace expression specication. After that, the thesis presents a novel approach for supporting static verication through the addition of monitors at runtime (post-process). 4. Implementation: the thesis presents RIVERtools, a tool supporting the writing, the syntactic analysis and the decentralization of trace expressions

    2019 EC3 July 10-12, 2019 Chania, Crete, Greece

    Get PDF

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution
    corecore