27 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Geographic information extraction from texts

    Get PDF
    A large volume of unstructured texts, containing valuable geographic information, is available online. This information – provided implicitly or explicitly – is useful not only for scientific studies (e.g., spatial humanities) but also for many practical applications (e.g., geographic information retrieval). Although large progress has been achieved in geographic information extraction from texts, there are still unsolved challenges and issues, ranging from methods, systems, and data, to applications and privacy. Therefore, this workshop will provide a timely opportunity to discuss the recent advances, new ideas, and concepts but also identify research gaps in geographic information extraction

    New Perspectives in Critical Data Studies

    Get PDF
    This Open Access book examines the ambivalences of data power. Firstly, the ambivalences between global infrastructures and local invisibilities challenge the grand narrative of the ephemeral nature of a global data infrastructure. They make visible local working and living conditions, and the resources and arrangements required to operate and run them. Secondly, the book examines ambivalences between the state and data justice. It considers data justice in relation to state surveillance and data capitalism, and reflects on the ambivalences between an “entrepreneurial state” and a “welfare state”. Thirdly, the authors discuss ambivalences of everyday practices and collective action, in which civil society groups, communities, and movements try to position the interests of people against the “big players” in the tech industry. The book includes eighteen chapters that provide new and varied perspectives on the role of data and data infrastructures in our increasingly datafied societies

    Preference-based Representation Learning for Collections

    Get PDF
    In this thesis, I make some contributions to the development of representation learning in the setting of external constraints and noisy supervision. A setting of external constraints refers to the scenario in which the learner is forced to output a latent representation of the given data points while enforcing some particular conditions. These conditions can be geometrical constraints, for example forcing the vector embeddings to be close to each other based on a particular relations, or forcing the embedding vectors to lie in a particular manifold, such as the manifold of vectors whose elements sum to 1, or even more complex constraints. The objects of interest in this thesis are elements of a collection X in an abstract space that is endowed with a similarity function which quantifies how similar two objects are. A collection is defined as a set of items in which the order is ignored but the multiplicity is relevant. Various types of collections are used as inputs or outputs in the machine learning field. The most common are perhaps sequences and sets. Besides studying representation learning approaches in presence of external constraints, in this thesis we tackle the case in which the evaluation of this similarity function is not directly possible. In recent years, the machine learning setting of having only binary answers to some comparisons for tuples of elements has gained interest. Learning good representations from a scenario in which a clear distance information cannot be obtained is of fundamental importance. This problem is opposite to the standard machine learning setting where the similarity function between elements can be directly evaluated. Moreover, we tackle the case in which the learner is given noisy supervision signals, with a certain probability for the label to be incorrect. Another research question that was studied in this thesis is how to assess the quality of the learned representations and how a learner can convey the uncertainty about this representation. After the introductory Chapter 1, the thesis is structured in three main parts. In the first part, I present the results of representation learning based on data points that are sequences. The focus in this part is on sentences and permutations, particular types of sequences. The first contribution of this part consists in enforcing analogical relations between sentences and the second is learning appropriate representations for permutations, which are particular mathematical objects, while using neural networks. The second part of this thesis tackles the question of learning perceptual embeddings from binary and noisy comparisons. In machine learning, this problem is referred as ordinal embedding problem. This part contains two chapters which elaborate two different aspects of the problem: appropriately conveying the uncertainty of the representation and learning the embeddings from aggregated and noisy feedback. Finally the third part of the thesis, contains applications of the findings of the previous part, namely unsupervised alignment of clouds of embedding vectors and entity set extension

    Making the Most of Crowd Information: Learning and Evaluation in AI tasks with Disagreements.

    Get PDF
    PhD ThesesThere is plenty of evidence that humans disagree on the interpretation of many tasks in Natural Language Processing (nlp) and Computer Vision (cv), from objective tasks rooted in linguistics such as part-of-speech tagging to more subjective (observerdependent) tasks such as classifying an image or deciding whether a proposition follows from a certain premise. While most learning in Artificial Intelligence (ai) still relies on the assumption that a single interpretation, captured by the gold label, exists for each item, a growing research body in recent years has focused on learning methods that do not rely on this assumption. Rather, they aim to learn ranges of truth amidst disagreement. This PhD research makes a contribution to this field of study. Firstly, we analytically review the evidence for disagreement on nlp and cv tasks, focusing on tasks where substantial datasets with such information have been created. As part of this review, we also discuss the most popular approaches to training models from datasets containing multiple judgments and group these methods together according to their handling of disagreement. Secondly, we make three proposals for learning with disagreement; soft-loss, multi-task learning from gold and crowds, and automatic temperature-scaled soft-loss. Thirdly, we address one gap in this field of study – the prevalence of hard metrics for model evaluation even when the gold assumption is shown to be an idealization – by proposing several previously existing metrics and novel soft metrics that do not make this assumption and analyzing the merits and assumptions of all the metrics, hard and soft. Finally, we carry out a systematic investigation of the key proposals in learning with disagreement by training them across several tasks, considering several ways to evaluate the resulting models and assessing the conditions under which each approach is effective. This is a key contribution of this research as research in learning with disagreement do not often test proposals across tasks, compare proposals with a variety of approaches, or evaluate using both soft metrics and hard metrics. The results obtained suggest, first of all, that it is essential to reach a consensus on how to evaluate models. This is because the relative performance of the various training methods is critically affected by the chosen form of evaluation. Secondly, we observed a strong dataset effect. With substantial datasets, providing many judgments by high-quality coders for each item, training directly with soft labels achieved better results than training from aggregated or even gold labels. This result holds for both hard and soft evaluation. But when the above conditions do not hold, leveraging both gold and soft labels generally achieved the best results in the hard evaluation. All datasets and models employed in this paper are freely available as supplementary materials

    Learning to Map Natural Language to Executable Programs Over Databases

    Get PDF
    Natural language is a fundamental form of information and communication and is becoming the next frontier in computer interfaces. As the amount of data available online has increased exponentially, so has the need for Natural Language Interfaces (NLIs, which is not used for natural language inference in this thesis) to connect the data and the user by easily using natural language, significantly promoting the possibility and efficiency of information access for many users besides data experts. All consumer-facing software will one day have a dialogue interface, and this is the next vital leap in the evolution of search engines. Such intelligent dialogue systems should understand the meaning of language grounded in various contexts and generate effective language responses in different forms for information requests and human-computer communication.Developing these intelligent systems is challenging due to (1) limited benchmarks to drive advancements, (2) alignment mismatches between natural language and formal programs, (3) lack of trustworthiness and interpretability, (4) context dependencies in both human conversational interactions and the target programs, and (5) joint language understanding between dialog questions and NLI environments (e.g. databases and knowledge graphs). This dissertation presents several datasets, neural algorithms, and language models to address these challenges for developing deep learning technologies for conversational natural language interfaces (more specifically, NLIs to Databases or NLIDB). First, to drive advancements towards neural-based conversational NLIs, we design and propose several complex and cross-domain NLI benchmarks, along with introducing several datasets. These datasets enable training large, deep learning models. The evaluation is done on unseen databases. (e.g., about course arrangement). Systems must generalize well to not only new SQL queries but also to unseen database schemas to perform well on these tasks. Furthermore, in real-world applications, users often access information in a multi-turn interaction with the system by asking a sequence of related questions. The users may explicitly refer to or omit previously mentioned entities and constraints and may introduce refinements, additions, or substitutions to what has already been said. Therefore, some of them require systems to model dialog dynamics and generate natural language explanations for user verification. The full dialogue interaction with the system’s responses is also important as this supports clarifying ambiguous questions, verifying returned results, and notifying users of unanswerable or unrelated questions. A robust dialogue-based NLI system that can engage with users by forming its responses has thus become an increasingly necessary component for the query process. Moreover, this thesis presents the development of scalable algorithms designed to parse complex and sequential questions to formal programs (e.g., mapping questions to SQL queries that can execute against databases). We propose a novel neural model that utilizes type information from knowledge graphs to better understand rare entities and numbers in natural language questions. We also introduce a neural model based on syntax tree neural networks, which was the first methodology proposed for generating complex programs from language. Finally, language modeling creates contextualized vector representations of words by training a model to predict the next word given context words, which are the basis of deep learning for NLP. Recently, pre-trained language models such as BERT and RoBERTa achieve tremendous success in many natural language processing tasks such as text understanding and reading comprehension. However, most language models are pre-trained only on free-text such as Wikipedia articles and Books. Given that language in semantic parsing is usually related to some formal representations such as logic forms and SQL queries and has to be grounded in structural environments (e.g., databases), we propose better language models for NLIs by enforcing such compositional interpolation in them. To show they could better jointly understand dialog questions and NLI environments (e.g. databases and knowledge graphs), we show that these language models achieve new state-of-the-art results for seven representative tasks on semantic parsing, dialogue state tracking, and question answering. Also, our proposed pre-training method is much more effective than other prior work

    From pixels to people : recovering location, shape and pose of humans in images

    Get PDF
    Humans are at the centre of a significant amount of research in computer vision. Endowing machines with the ability to perceive people from visual data is an immense scientific challenge with a high degree of direct practical relevance. Success in automatic perception can be measured at different levels of abstraction, and this will depend on which intelligent behaviour we are trying to replicate: the ability to localise persons in an image or in the environment, understanding how persons are moving at the skeleton and at the surface level, interpreting their interactions with the environment including with other people, and perhaps even anticipating future actions. In this thesis we tackle different sub-problems of the broad research area referred to as "looking at people", aiming to perceive humans in images at different levels of granularity. We start with bounding box-level pedestrian detection: We present a retrospective analysis of methods published in the decade preceding our work, identifying various strands of research that have advanced the state of the art. With quantitative exper- iments, we demonstrate the critical role of developing better feature representations and having the right training distribution. We then contribute two methods based on the insights derived from our analysis: one that combines the strongest aspects of past detectors and another that focuses purely on learning representations. The latter method outperforms more complicated approaches, especially those based on hand- crafted features. We conclude our work on pedestrian detection with a forward-looking analysis that maps out potential avenues for future research. We then turn to pixel-level methods: Perceiving humans requires us to both separate them precisely from the background and identify their surroundings. To this end, we introduce Cityscapes, a large-scale dataset for street scene understanding. This has since established itself as a go-to benchmark for segmentation and detection. We additionally develop methods that relax the requirement for expensive pixel-level annotations, focusing on the task of boundary detection, i.e. identifying the outlines of relevant objects and surfaces. Next, we make the jump from pixels to 3D surfaces, from localising and labelling to fine-grained spatial understanding. We contribute a method for recovering 3D human shape and pose, which marries the advantages of learning-based and model- based approaches. We conclude the thesis with a detailed discussion of benchmarking practices in computer vision. Among other things, we argue that the design of future datasets should be driven by the general goal of combinatorial robustness besides task-specific considerations.Der Mensch steht im Zentrum vieler Forschungsanstrengungen im Bereich des maschinellen Sehens. Es ist eine immense wissenschaftliche Herausforderung mit hohem unmittelbarem Praxisbezug, Maschinen mit der Fähigkeit auszustatten, Menschen auf der Grundlage von visuellen Daten wahrzunehmen. Die automatische Wahrnehmung kann auf verschiedenen Abstraktionsebenen erfolgen. Dies hängt davon ab, welches intelligente Verhalten wir nachbilden wollen: die Fähigkeit, Personen auf der Bildfläche oder im 3D-Raum zu lokalisieren, die Bewegungen von Körperteilen und Körperoberflächen zu erfassen, Interaktionen einer Person mit ihrer Umgebung einschließlich mit anderen Menschen zu deuten, und vielleicht sogar zukünftige Handlungen zu antizipieren. In dieser Arbeit beschäftigen wir uns mit verschiedenen Teilproblemen die dem breiten Forschungsgebiet "Betrachten von Menschen" gehören. Beginnend mit der Fußgängererkennung präsentieren wir eine Analyse von Methoden, die im Jahrzehnt vor unserem Ausgangspunkt veröffentlicht wurden, und identifizieren dabei verschiedene Forschungsstränge, die den Stand der Technik vorangetrieben haben. Unsere quantitativen Experimente zeigen die entscheidende Rolle sowohl der Entwicklung besserer Bildmerkmale als auch der Trainingsdatenverteilung. Anschließend tragen wir zwei Methoden bei, die auf den Erkenntnissen unserer Analyse basieren: eine Methode, die die stärksten Aspekte vergangener Detektoren kombiniert, eine andere, die sich im Wesentlichen auf das Lernen von Bildmerkmalen konzentriert. Letztere übertrifft kompliziertere Methoden, insbesondere solche, die auf handgefertigten Bildmerkmalen basieren. Wir schließen unsere Arbeit zur Fußgängererkennung mit einer vorausschauenden Analyse ab, die mögliche Wege für die zukünftige Forschung aufzeigt. Anschließend wenden wir uns Methoden zu, die Entscheidungen auf Pixelebene betreffen. Um Menschen wahrzunehmen, müssen wir diese sowohl praezise vom Hintergrund trennen als auch ihre Umgebung verstehen. Zu diesem Zweck führen wir Cityscapes ein, einen umfangreichen Datensatz zum Verständnis von Straßenszenen. Dieser hat sich seitdem als Standardbenchmark für Segmentierung und Erkennung etabliert. Darüber hinaus entwickeln wir Methoden, die die Notwendigkeit teurer Annotationen auf Pixelebene reduzieren. Wir konzentrieren uns hierbei auf die Aufgabe der Umgrenzungserkennung, d. h. das Erkennen der Umrisse relevanter Objekte und Oberflächen. Als nächstes machen wir den Sprung von Pixeln zu 3D-Oberflächen, vom Lokalisieren und Beschriften zum präzisen räumlichen Verständnis. Wir tragen eine Methode zur Schätzung der 3D-Körperoberfläche sowie der 3D-Körperpose bei, die die Vorteile von lernbasierten und modellbasierten Ansätzen vereint. Wir schließen die Arbeit mit einer ausführlichen Diskussion von Evaluationspraktiken im maschinellen Sehen ab. Unter anderem argumentieren wir, dass der Entwurf zukünftiger Datensätze neben aufgabenspezifischen Überlegungen vom allgemeinen Ziel der kombinatorischen Robustheit bestimmt werden sollte

    Inferring implicit relevance from physiological signals

    Get PDF
    Ongoing growth in data availability and consumption has meant users are increasingly faced with the challenge of distilling relevant information from an abundance of noise. Overcoming this information overload can be particularly difficult in situations such as intelligence analysis, which involves subjectivity, ambiguity, or risky social implications. Highly automated solutions are often inadequate, therefore new methods are needed for augmenting existing analysis techniques to support user decision making. This project investigated the potential for deep learning to infer the occurrence of implicit relevance assessments from users' biometrics. Internal cognitive processes manifest involuntarily within physiological signals, and are often accompanied by 'gut feelings' of intuition. Quantifying unconscious mental processes during relevance appraisal may be a useful tool during decision making by offering an element of objectivity to an inherently subjective situation. Advances in wearable or non-contact sensors have made recording these signals more accessible, whilst advances in artificial intelligence and deep learning have enhanced the discovery of latent patterns within complex data. Together, these techniques might make it possible to transform tacit knowledge into codified knowledge which can be shared. A series of user studies recorded eye gaze movements, pupillary responses, electrodermal activity, heart rate variability, and skin temperature data from participants as they completed a binary relevance assessment task. Participants were asked to explicitly identify which of 40 short-text documents were relevant to an assigned topic. Investigations found this physiological data to contain detectable cues corresponding with relevance judgements. Random forests and artificial neural networks trained on features derived from the signals were able to produce inferences with moderate correlations with the participants' explicit relevance decisions. Several deep learning algorithms trained on the entire physiological time series data were generally unable to surpass the performance of feature-based methods, and instead produced inferences with low correlations with participants' explicit personal truths. Overall, pupillary responses, eye gaze movements, and electrodermal activity offered the most discriminative power, with additional physiological data providing diminishing or adverse returns. Finally, a conceptual design for a decision support system is used to discuss social implications and practicalities of quantifying implicit relevance using deep learning techniques. Potential benefits included assisting with introspection and collaborative assessment, however quantifying intrinsically unknowable concepts using personal data and abstruse artificial intelligence techniques were argued to pose incommensurate risks and challenges. Deep learning techniques therefore have the potential for inferring implicit relevance in information-rich environments, but are not yet fit for purpose. Several avenues worthy of further research are outlined
    corecore