17 research outputs found

    Flud: a hybrid crowd-algorithm approach for visualizing biological networks

    Full text link
    Modern experiments in many disciplines generate large quantities of network (graph) data. Researchers require aesthetic layouts of these networks that clearly convey the domain knowledge and meaning. However, the problem remains challenging due to multiple conflicting aesthetic criteria and complex domain-specific constraints. In this paper, we present a strategy for generating visualizations that can help network biologists understand the protein interactions that underlie processes that take place in the cell. Specifically, we have developed Flud, an online game with a purpose (GWAP) that allows humans with no expertise to design biologically meaningful graph layouts with the help of algorithmically generated suggestions. Further, we propose a novel hybrid approach for graph layout wherein crowdworkers and a simulated annealing algorithm build on each other's progress. To showcase the effectiveness of Flud, we recruited crowd workers on Amazon Mechanical Turk to lay out complex networks that represent signaling pathways. Our results show that the proposed hybrid approach outperforms state-of-the-art techniques for graphs with a large number of feedback loops. We also found that the algorithmically generated suggestions guided the players when they are stuck and helped them improve their score. Finally, we discuss broader implications for mixed-initiative interactions in human computation games.Comment: This manuscript is currently under revie

    Virtual Movement from Natural Language Text

    Get PDF
    It is a challenging task for machines to follow a textual instruction. Properly understanding and using the meaning of the textual instruction in some application areas, such as robotics, animation, etc. is very difficult for machines. The interpretation of textual instructions for the automatic generation of the corresponding motions (e.g. exercises) and the validation of these movements are difficult tasks. To achieve our initial goal of having machines properly understand textual instructions and generate some motions accordingly, we recorded five different exercises in random order with the help of seven amateur performers using a Microsoft Kinect device. During the recording, we found that the same exercise was interpreted differently by each human performer even though they were given identical textual instructions. We performed a quality assessment study based on the derived data using a crowdsourcing approach. Later, we tested the inter-rater agreement for different types of visualization, and found the RGB-based visualization showed the best agreement among the annotatorsa animation with a virtual character standing in second position. In the next phase we worked with physical exercise instructions. Physical exercise is an everyday activity domain in which textual exercise descriptions are usually focused on body movements. Body movements are considered to be a common element across a broad range of activities that are of interest for robotic automation. Our main goal is to develop a text-to-animation system which we can use in different application areas and which we can also use to develop multiple-purpose robots whose operations are based on textual instructions. This system could be also used in different text to scene and text to animation systems. To generate a text-based animation system for physical exercises the process requires the robot to have natural language understanding (NLU) including understanding non-declarative sentences. It also requires the extraction of semantic information from complex syntactic structures with a large number of potential interpretations. Despite a comparatively high density of semantic references to body movements, exercise instructions still contain large amounts of underspecified information. Detecting, and bridging and/or filling such underspecified elements is extremely challenging when relying on methods from NLU alone. However, humans can often add such implicit information with ease due to its embodied nature. We present a process that contains the combination of a semantic parser and a Bayesian network. In the semantic parser, the system extracts all the information present in the instruction to generate the animation. The Bayesian network adds some brain to the system to extract the information that is implicit in the instruction. This information is very important for correctly generating the animation and is very easy for a human to extract but very difficult for machines. Using crowdsourcing, with the help of human brains, we updated the Bayesian network. The combination of the semantic parser and the Bayesian network explicates the information that is contained in textual movement instructions so that an animation execution of the motion sequences performed by a virtual humanoid character can be rendered. To generate the animation from the information we basically used two different types of Markup languages. Behaviour Markup Language is used for 2D animation. Humanoid Animation uses Virtual Reality Markup Language for 3D animation

    Enhancing the Reasoning Capabilities of Natural Language Inference Models with Attention Mechanisms and External Knowledge

    Get PDF
    Natural Language Inference (NLI) is fundamental to natural language understanding. The task summarises the natural language understanding capabilities within a simple formulation of determining whether a natural language hypothesis can be inferred from a given natural language premise. NLI requires an inference system to address the full complexity of linguistic as well as real-world commonsense knowledge and, hence, the inferencing and reasoning capabilities of an NLI system are utilised in other complex language applications such as summarisation and machine comprehension. Consequently, NLI has received significant recent attention from both academia and industry. Despite extensive research, contemporary neural NLI models face challenges arising from the sole reliance on training data to comprehend all the linguistic and real-world commonsense knowledge. Further, different attention mechanisms, crucial to the success of neural NLI models, present the prospects of better utilisation when employed in combination. In addition, the NLI research field lacks a coherent set of guidelines for the application of one of the most crucial regularisation hyper-parameters in the RNN-based NLI models -- dropout. In this thesis, we present neural models capable of leveraging the attention mechanisms and the models that utilise external knowledge to reason about inference. First, a combined attention model to leverage different attention mechanisms is proposed. Experimentation demonstrates that the proposed model is capable of better modelling the semantics of long and complex sentences. Second, to address the limitation of the sole reliance on the training data, two novel neural frameworks utilising real-world commonsense and domain-specific external knowledge are introduced. Employing the rule-based external knowledge retrieval from the knowledge graphs, the first model takes advantage of the convolutional encoders and factorised bilinear pooling to augment the reasoning capabilities of the state-of-the-art NLI models. Utilising the significant advances in the research of contextual word representations, the second model, addresses the existing crucial challenges of external knowledge retrieval, learning the encoding of the retrieved knowledge and the fusion of the learned encodings to the NLI representations, in unique ways. Experimentation demonstrates the efficacy and superiority of the proposed models over previous state-of-the-art approaches. Third, for the limitation on dropout investigations, formulated on exhaustive evaluation, analysis and validation on the proposed RNN-based NLI models, a coherent set of guidelines is introduced

    Feasibility investigation of crowdsourcing-based product design and development for manufacturing

    Get PDF
    In the era of Industry 4.0, to help manufacturers make quick response to rapidly changing market and customer needs, this research explores the feasibility of realizing benefits of crowdsourcing in product design and development from a lifecycle point of view through investigations on product design quality control and crowdsourcing technology theories, product design lifecycle information modelling, and simulation platform prototyping. It intends to help manufacturers create a product-service ecosystem to deliver values to all involved stakeholders of a PDD process. This study started with building up the theoretical foundation of product design quality control in crowdsourcing design environment. Then, key crowdsourcing technologies for realizing a lifecycle PDD process on a crowdsourcing platform while enabling the design quality were explored. Thirdly, a multi-layer product design lifecycle information model was developed to accommodate all design related information in a PDD process and the identified information at each design phase and the relationships and interactions among information entities were evaluated by case studies and ORM modelling method, respectively. Finally, two crowdsourcing platform prototypes based on the PDLIM were developed to test their effectiveness in communicating design information among stakeholders and delivering value to them. The proposed research made contributions to knowledge through the following improvements/advancements: (1) understanding of key factors affecting product design quality in crowdsourcing design environments, (2) a technical foundation of crowdsourcing technologies for PDD process, (3) a novel product design lifecycle information model accommodating design information in crowdsourcing environments, and (4) guidelines on developing intermediary and integrated crowdsourcing platforms for PDD
    corecore