48 research outputs found

    A fast and tight heuristic for A∗ in road networks

    Get PDF
    We study exact, efficient and practical algorithms for route planning in large road networks. Routing applications often require integrating the current traffic situation, planning ahead with traffic predictions for the future, respecting forbidden turns, and many other features depending on the exact application. While Dijkstra’s algorithm can be used to solve these problems, it is too slow for many applications. A* is a classical approach to accelerate Dijkstra’s algorithm. A* can support many extended scenarios without much additional implementation complexity. However, A*’s performance depends on the availability of a good heuristic that estimates distances. Computing tight distance estimates is a challenge on its own. On road networks, shortest paths can also be quickly computed using hierarchical speedup techniques. They achieve speed and exactness but sacrifice A*’s flexibility. Extending them to certain practical applications can be hard. In this paper, we present an algorithm to efficiently extract distance estimates for A* from Contraction Hierarchies (CH), a hierarchical technique. We call our heuristic CH-Potentials. Our approach allows decoupling the supported extensions from the hierarchical speed-up technique. Additionally, we describe A* optimizations to accelerate the processing of low degree nodes, which often occur in road networks

    Look-ahead with mini-bucket heuristics for MPE

    Get PDF
    The paper investigates the potential of look-ahead in the con-text of AND/OR search in graphical models using the Mini-Bucket heuristic for combinatorial optimization tasks (e.g., MAP/MPE or weighted CSPs). We present and analyze the complexity of computing the residual (a.k.a Bellman update) of the Mini-Bucket heuristic and show how this can be used to identify which parts of the search space are more likely to benefit from look-ahead and how to bound its overhead. We also rephrase the look-ahead computation as a graphical model, to facilitate structure exploiting inference schemes. We demonstrate empirically that augmenting Mini-Bucket heuristics by look-ahead is a cost-effective way of increasing the power of Branch-And-Bound search.Postprint (published version

    Adaptive search techniques in AI planning and heuristic search

    Get PDF
    State-space search is a common approach to solve problems appearing in artificial intelligence and other subfields of computer science. In such problems, an agent must find a sequence of actions leading from an initial state to a goal state. However, the state spaces of practical applications are often too large to explore exhaustively. Hence, heuristic functions that estimate the distance to a goal state (such as straight-line distance for navigation tasks) are used to guide the search more effectively. Heuristic search is typically viewed as a static process. The heuristic function is assumed to be unchanged throughout the search, and its resulting values are directly used for guidance without applying any further reasoning to them. Yet critical aspects of the task may only be discovered during the search, e.g., regions of the state space where the heuristic does not yield reliable values. Our work here aims to make this process more dynamic, allowing the search to adapt to such observations. One form of adaptation that we consider is online refinement of the heuristic function. We design search algorithms that detect weaknesses in the heuristic, and address them with targeted refinement operations. If the heuristic converges to perfect estimates, this results in a secondary method of progress, causing search algorithms that are otherwise incomplete to eventually find a solution. We also consider settings that inherently require adaptation: In online replanning, a plan that is being executed must be amended for changes in the environment. Similarly, in real-time search, an agent must act under strict time constraints with limited information. The search algorithms we introduce in this work share a common pattern of online adaptation, allowing them to effectively react to challenges encountered during the search. We evaluate our contributions on a wide range of standard benchmarks. Our results show that the flexibility of these algorithms makes them more robust than traditional approaches, and they often yield substantial improvements over current state-of-the-art planners.Die Zustandsraumsuche ist ein oft verwendeter Ansatz um verschiedene Probleme zu lösen, die in der Künstlichen Intelligenz und anderen Bereichen der Informatik auftreten. Dabei muss ein Akteur eine Folge von Aktionen finden, die einen Pfad von einem Startzustand zu einem Zielzustand bilden. Die Zustandsräume von praktischen Anwendungen sind häufig zu groß um sie vollständig zu durchsuchen. Aus diesem Grund leitet man die Suche mit Heuristiken, die die Distanz zu einem Zielzustand abschätzen; zum Beispiel lässt sich die Luftliniendistanz als Heuristik für Navigationsprobleme einsetzen. Heuristische Suche wird typischerweise als statischer Prozess angesehen. Man nimmt an, dass die Heuristik während der Suche eine unveränderte Funktion ist, und die resultierenden Werte werden direkt zur Leitung der Suche benutzt ohne weitere Logik darauf anzuwenden. Jedoch könnten kritische Aspekte des Problems erst im Laufe der Suche erkannt werden, wie zum Beispiel Bereiche des Zustandsraums in denen die Heuristik keine verlässlichen Abschätzungen liefert. In dieser Arbeit wird der Suchprozess dynamischer gestaltet und der Suche ermöglicht sich solchen Beobachtungen anzupassen. Eine Art dieser Anpassung ist die Onlineverbesserung der Heuristik. Es werden Suchalgorithmen entwickelt, die Schwächen in der Heuristik erkennen und mit gezielten Verbesserungsoperationen beheben. Wenn die Heuristik zu perfekten Werten konvergiert ergibt sich daraus eine zusätzliche Form von Fortschritt, wodurch auch Suchalgorithmen, die sonst unvollständig sind, garantiert irgendwann eine Lösung finden werden. Es werden auch Szenarien betrachtet, die schon von sich aus Anpassung erfordern: In der Onlineumplanung muss ein Plan, der gerade ausgeführt wird, auf Änderungen in der Umgebung angepasst werden. Ähnlich dazu muss sich ein Akteur in der Echtzeitsuche unter strengen Zeitauflagen und mit eingeschränkten Informationen bewegen. Die Suchalgorithmen, die in dieser Arbeit eingeführt werden, folgen einem gemeinsamen Muster von Onlineanpassung, was ihnen ermöglicht effektiv auf Herausforderungen zu reagieren die im Verlauf der Suche aufkommen. Diese Ansätze werden auf einer breiten Reihe von Benchmarks ausgewertet. Die Ergebnisse zeigen, dass die Flexibilität dieser Algorithmen zu erhöhter Zuverlässigkeit im Vergleich zu traditionellen Ansätzen führt, und es werden oft deutliche Verbesserungen gegenüber modernen Planungssystemen erzielt.DFG grant 389792660 as part of TRR 248 – CPEC (see https://perspicuous-computing.science), and DFG grant HO 2169/5-1, "Critically Constrained Planning via Partial Delete Relaxation

    Real-time algorithm configuration

    Get PDF
    This dissertation presents a number of contributions to the field of algorithm configur- ation. In particular, we present an extension to the algorithm configuration problem, real-time algorithm configuration, where configuration occurs online on a stream of instances, without the need for prior training, and problem solutions are returned in the shortest time possible. We propose a framework for solving the real-time algorithm configuration problem, ReACT. With ReACT we demonstrate that by using the parallel computing architectures, commonplace in many systems today, and a robust aggregate ranking system, configuration can occur without any impact on performance from the perspective of the user. This is achieved by means of a racing procedure. We show two concrete instantiations of the framework, and show them to be on a par with or even exceed the state-of-the-art in offline algorithm configuration using empirical evaluations on a range of combinatorial problems from the literature. We discuss, assess, and provide justification for each of the components used in our framework instantiations. Specifically, we show that the TrueSkill ranking system commonly used to rank players’ skill in multiplayer games can be used to accurately es- timate the quality of an algorithm’s configuration using only censored results from races between algorithm configurations. We confirm that the order that problem instances arrive in influences the configuration performance and that the optimal selection of configurations to participate in races is dependent on the distribution of the incoming in- stance stream. We outline how to maintain a pool of quality configurations by removing underperforming configurations, and techniques to generate replacement configurations with minimal computational overhead. Finally, we show that the configuration space can be reduced using feature selection techniques from the machine learning literature, and that doing so can provide a boost in configuration performance

    Efficient Identification of Redundant Actions in Plans

    Get PDF
    Při hledání plánů je často velmi složité najít ten optimální. Najít jakýkoli plán bývá mnohem snazší. Takto vzniklé plány mohou být často snadno vylepšeny a zkráceny. Jedním ze způsobů optimalizace plánu je identifikování zbytečných akcí a jejich následné odstranění. V této práci se zaměříme na implementaci několika metod, kterými toho lze dosáhnout. Představíme dvě optimalizace, jimiž lze zkoumané metody zrychlit. Navrhneme novou metodu, jenž bude inspirovaná původními metodami a námi vyvinutými optimalizacemi. Na závěr všechny metody porovnáme na problémech používaných na International Planning Competition a vzneseme podněty pro další výzkum.Finding an optimal plan can be very difficult. However, finding any plan is often much easier. Since these plans are suboptimal, they may be optimized and shortened. One way to achieve this is to identify and remove redundant actions. This work focuses on methods, which were designed to perform such optimization. We will introduce two approaches, which will speed up the examined methods. Then we will propose a new method inspired by the aforementioned ones and their new optimizations. In the end, we will compare all the methods on several benchmarks from the International Planning Competitions and propose topics for further research

    Residual-guided look-ahead in AND/OR search for graphical models

    Get PDF
    We introduce the concept of local bucket error for the mini-bucket heuristics and show how it can be used to improve the power of AND/OR search for combinatorial optimization tasks in graphical models (e.g. MAP/MPE or weighted CSPs). The local bucket error illuminates how the heuristic errors are distributed in the search space, guided by the mini-bucket heuristic. We present and analyze methods for compiling the local bucket-errors (exactly and approximately) and show that they can be used to yield an effective tool for balancing look-ahead overhead during search. This can be especially instrumental when memory is restricted, accommodating the generation of only weak compiled heuristics. We illustrate the impact of the proposed schemes in an extensive empirical evaluation for both finding exact solutions and anytime suboptimal solutions.Peer ReviewedPostprint (published version

    Goal reasoning for autonomous agents using automated planning

    Get PDF
    Mención Internacional en el título de doctorAutomated planning deals with the task of finding a sequence of actions, namely a plan, which achieves a goal from a given initial state. Most planning research consider goals are provided by a external user, and agents just have to find a plan to achieve them. However, there exist many real world domains where agents should not only reason about their actions but also about their goals, generating new ones or changing them according to the perceived environment. In this thesis we aim at broadening the goal reasoning capabilities of planningbased agents, both when acting in isolation and when operating in the same environment as other agents. In single-agent settings, we firstly explore a special type of planning tasks where we aim at discovering states that fulfill certain cost-based requirements with respect to a given set of goals. By computing these states, agents are able to solve interesting tasks such as find escape plans that move agents in to safe places, hide their true goal to a potential observer, or anticipate dynamically arriving goals. We also show how learning the environment’s dynamics may help agents to solve some of these tasks. Experimental results show that these states can be quickly found in practice, making agents able to solve new planning tasks and helping them in solving some existing ones. In multi-agent settings, we study the automated generation of goals based on other agents’ behavior. We focus on competitive scenarios, where we are interested in computing counterplans that prevent opponents from achieving their goals. We frame these tasks as counterplanning, providing theoretical properties of the counterplans that solve them. We also show how agents can benefit from computing some of the states we propose in the single-agent setting to anticipate their opponent’s movements, thus increasing the odds of blocking them. Experimental results show how counterplans can be found in different environments ranging from competitive planning domains to real-time strategy games.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidenta: Eva Onaindía de la Rivaherrera.- Secretario: Ángel García Olaya.- Vocal: Mark Robert
    corecore