15 research outputs found

    Is Hyper-extensionality Preservable Under Deletions of Graph Elements?

    Get PDF
    Any hereditarily finite set S can be represented as a finite pointed graph \u2013dubbed membership graph\u2013 whose nodes denote elements of the transitive closure of {S} and whose edges model the membership relation. Membership graphs must be hyper-extensional, that is pairwise distinct nodes are not bisimilar and (uniquely) represent hereditarily finite sets. We will see that the removal of even a single node or edge from a membership graph can cause \u201ccollapses\u201d of different nodes and, therefore, the loss of hyper-extensionality of the graph itself. With the intent of gaining a deeper understanding on the class of hyper-extensional hereditarily finite sets, this paper investigates whether pointed hyper-extensional graphs always contain either a node or an edge whose removal does not disrupt the hyper-extensionality property

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    corecore