4 research outputs found

    Distributed Web Service Coordination for Collaboration Applications and Biological Workflows

    Get PDF
    In this dissertation work, we have investigated the main research thrust of decentralized coordination of workflows over web services. To address distributed workflow coordination, first we have developed “Web Coordination Bonds” as a capable set of dependency modeling primitives that enable each web service to manage its own dependencies. Web bond primitives are as powerful as extended Petri nets and have sufficient modeling and expressive capabilities to model workflow dependencies. We have designed and prototyped our “Web Service Coordination Management Middleware” (WSCMM) system that enhances current web services infrastructure to accommodate web bond enabled web services. Finally, based on core concepts of web coordination bonds and WSCMM, we have developed the “BondFlow” system that allows easy configuration distributed coordination of workflows. The footprint of the BonFlow runtime is 24KB and the additional third party software packages, SOAP client and XML parser, account for 115KB

    Exploiting general-purpose background knowledge for automated schema matching

    Full text link
    The schema matching task is an integral part of the data integration process. It is usually the first step in integrating data. Schema matching is typically very complex and time-consuming. It is, therefore, to the largest part, carried out by humans. One reason for the low amount of automation is the fact that schemas are often defined with deep background knowledge that is not itself present within the schemas. Overcoming the problem of missing background knowledge is a core challenge in automating the data integration process. In this dissertation, the task of matching semantic models, so-called ontologies, with the help of external background knowledge is investigated in-depth in Part I. Throughout this thesis, the focus lies on large, general-purpose resources since domain-specific resources are rarely available for most domains. Besides new knowledge resources, this thesis also explores new strategies to exploit such resources. A technical base for the development and comparison of matching systems is presented in Part II. The framework introduced here allows for simple and modularized matcher development (with background knowledge sources) and for extensive evaluations of matching systems. One of the largest structured sources for general-purpose background knowledge are knowledge graphs which have grown significantly in size in recent years. However, exploiting such graphs is not trivial. In Part III, knowledge graph em- beddings are explored, analyzed, and compared. Multiple improvements to existing approaches are presented. In Part IV, numerous concrete matching systems which exploit general-purpose background knowledge are presented. Furthermore, exploitation strategies and resources are analyzed and compared. This dissertation closes with a perspective on real-world applications

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Methods for Efficient and Accurate Discovery of Services

    Get PDF
    With an increasing number of services developed and offered in an enterprise setting or the Web, users can hardly verify their requirements manually in order to find appropriate services. In this thesis, we develop a method to discover semantically described services. We exploit comprehensive service and request descriptions such that a wide variety of use cases can be supported. In our discovery method, we compute the matchmaking decision by employing an efficient model checking technique
    corecore