4 research outputs found

    Behavior analysis for aging-in-place using similarity heatmaps

    Get PDF
    The demand for healthcare services for an increasing population of older adults is faced with the shortage of skilled caregivers and a constant increase in healthcare costs. In addition, the strong preference of the elderly to live independently has been driving much research on "ambient-assisted living" (AAL) systems to support aging-in-place. In this paper, we propose to employ a low-resolution image sensor network for behavior analysis of a home occupant. A network of 10 low-resolution cameras (30x30 pixels) is installed in a service flat of an elderly, based on which the user's mobility tracks are extracted using a maximum likelihood tracker. We propose a novel measure to find similar patterns of behavior between each pair of days from the user's detected positions, based on heatmaps and Earth mover's distance (EMD). Then, we use an exemplar-based approach to identify sleeping, eating, and sitting activities, and walking patterns of the elderly user for two weeks of real-life recordings. The proposed system achieves an overall accuracy of about 94%

    Design, synthesis, and biological activity of novel heptacyclic pyrazolamide derivatives : a new candidate of dual-target insect growth regulators

    Get PDF
    Insect growth regulators (IGRs) can cause abnormal growth and development in insects, resulting in incomplete metamorphosis or even death of the larvae. Ecdysone receptor (EcR) and chitinase in insects play indispensable roles in the molting process. Ecdysone analogues and chitinase inhibitors are considered as potential IGRs. In order to find new and highly effective IGR candidates, based on the structure-activity relationship and molecular docking results of the active compound 6i (3-(tert-butyl)-N-(4-(tert-butyl)phenyl)-1-phenyl-1H-pyrazole-5-carboxamide) discovered in our previous work, we changed the t-butyl group on the pyrazole ring into heptacycle to enhance the hydrophobicity. Consequently, a series of novel heptacyclic pyrazolamide derivatives were designed and synthesized. The bioassay results demonstrated that some compounds showed obvious insecticidal activity. Especially, D-27 (N-(4-(tert-butyl)phenyl)-2-phenyl-2,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-5-carboxamide) showed good activities against Plutella xylostella (LC50, 51.50 mg.L-1) and Mythimna separata (100% mortality at 2.5 mg.L-1). Furthermore, protein validation indicated that D-27 acts not only on the EcR but also on chitinase Of ChtI. Molecular docking and molecular dynamics simulation explained the vital factors in the interaction between D-27 and receptors. D-27 may be a new lead candidate with a dual target in which Of ChtI shall be the main one. This work created a new starting point for discovering a novel type of IGRs

    A Collective Adaptive Approach to Decentralised k-Coverage in Multi-robot Systems

    Get PDF
    We focus on the online multi-object k-coverage problem (OMOkC), where mobile robots are required to sense a mobile target from k diverse points of view, coordinating themselves in a scalable and possibly decentralised way. There is active research on OMOkC, particularly in the design of decentralised algorithms for solving it. We propose a new take on the issue: Rather than classically developing new algorithms, we apply a macro-level paradigm, called aggregate computing, specifically designed to directly program the global behaviour of a whole ensemble of devices at once. To understand the potential of the application of aggregate computing to OMOkC, we extend the Alchemist simulator (supporting aggregate computing natively) with a novel toolchain component supporting the simulation of mobile robots. This way, we build a software engineering toolchain comprising language and simulation tooling for addressing OMOkC. Finally, we exercise our approach and related toolchain by introducing new algorithms for OMOkC; we show that they can be expressed concisely, reuse existing software components and perform better than the current state-of-the-art in terms of coverage over time and number of objects covered overall

    Unobtrusive Health Monitoring in Private Spaces: The Smart Home

    Get PDF
    With the advances in sensor technology, big data, and artificial intelligence, unobtrusive in-home health monitoring has been a research focus for decades. Following up our research on smart vehicles, within the framework of unobtrusive health monitoring in private spaces, this work attempts to provide a guide to current sensor technology for unobtrusive in-home monitoring by a literature review of the state of the art and to answer, in particular, the questions: (1) What types of sensors can be used for unobtrusive in-home health data acquisition? (2) Where should the sensors be placed? (3) What data can be monitored in a smart home? (4) How can the obtained data support the monitoring functions? We conducted a retrospective literature review and summarized the state-of-the-art research on leveraging sensor technology for unobtrusive in-home health monitoring. For structured analysis, we developed a four-category terminology (location, unobtrusive sensor, data, and monitoring functions). We acquired 912 unique articles from four relevant databases (ACM Digital Lib, IEEE Xplore, PubMed, and Scopus) and screened them for relevance, resulting in n=55 papers analyzed in a structured manner using the terminology. The results delivered 25 types of sensors (motion sensor, contact sensor, pressure sensor, electrical current sensor, etc.) that can be deployed within rooms, static facilities, or electric appliances in an ambient way. While behavioral data (e.g., presence (n=38), time spent on activities (n=18)) can be acquired effortlessly, physiological parameters (e.g., heart rate, respiratory rate) are measurable on a limited scale (n=5). Behavioral data contribute to functional monitoring. Emergency monitoring can be built up on behavioral and environmental data. Acquired physiological parameters allow reasonable monitoring of physiological functions to a limited extent. Environmental data and behavioral data also detect safety and security abnormalities. Social interaction monitoring relies mainly on direct monitoring of tools of communication (smartphone; computer). In summary, convincing proof of a clear effect of these monitoring functions on clinical outcome with a large sample size and long-term monitoring is still lacking
    corecore