55 research outputs found

    Community detection applied on big linked data

    Get PDF
    The Linked Open Data (LOD) Cloud has more than tripled its sources in just six years (from 295 sources in 2011 to 1163 datasets in 2017). The actual Web of Data contains more then 150 Billions of triples. We are assisting at a staggering growth in the production and consumption of LOD and the generation of increasingly large datasets. In this scenario, providing researchers, domain experts, but also businessmen and citizens with visual representations and intuitive interactions can significantly aid the exploration and understanding of the domains and knowledge represented by Linked Data. Various tools and web applications have been developed to enable the navigation, and browsing of the Web of Data. However, these tools lack in producing high level representations for large datasets, and in supporting users in the exploration and querying of these big sources. Following this trend, we devised a new method and a tool called H-BOLD (High level visualizations on Big Open Linked Data). H-BOLD enables the exploratory search and multilevel analysis of Linked Open Data. It offers different levels of abstraction on Big Linked Data. Through the user interaction and the dynamic adaptation of the graph representing the dataset, it will be possible to perform an effective exploration of the dataset, starting from a set of few classes and adding new ones. Performance and portability of H-BOLD have been evaluated on the SPARQL endpoint listed on SPARQL ENDPOINT STATUS. The effectiveness of H-BOLD as a visualization tool is described through a user study

    Visualizing Statistical Linked Knowledge for Decision Support

    Get PDF
    In a global and interconnected economy, decision makers often need to consider information from various domains. A tourism destination manager, for example, has to correlate tourist behavior with financial and environmental indicators to allocate funds for strategic long-term investments. Statistical data underpins a broad range of such cross-domain decision tasks. A variety of statistical datasets are available as Linked Open Data, often incorporated into visual analytics solutions to support decision making. What are the principles, architectures, workflows and implementation design patterns that should be followed for building such visual cross-domain decision support systems. This article introduces a methodology to integrate and visualize cross-domain statistical data sources by applying selected RDF Data Cube (QB) principles. A visual dashboard built according to this methodology is presented and evaluated in the context of two use cases in the tourism and telecommunications domains

    Named Entity Resolution in Personal Knowledge Graphs

    Full text link
    Entity Resolution (ER) is the problem of determining when two entities refer to the same underlying entity. The problem has been studied for over 50 years, and most recently, has taken on new importance in an era of large, heterogeneous 'knowledge graphs' published on the Web and used widely in domains as wide ranging as social media, e-commerce and search. This chapter will discuss the specific problem of named ER in the context of personal knowledge graphs (PKGs). We begin with a formal definition of the problem, and the components necessary for doing high-quality and efficient ER. We also discuss some challenges that are expected to arise for Web-scale data. Next, we provide a brief literature review, with a special focus on how existing techniques can potentially apply to PKGs. We conclude the chapter by covering some applications, as well as promising directions for future research.Comment: To appear as a book chapter by the same name in an upcoming (Oct. 2023) book `Personal Knowledge Graphs (PKGs): Methodology, tools and applications' edited by Tiwari et a

    Deliverable D7.7 Dissemination and Standardisation Report v3

    Get PDF
    This deliverable presents the LinkedTV dissemination and standardisation report for the project period of months 31 to 42 (April 2014 to March 2015)

    Exploiting general-purpose background knowledge for automated schema matching

    Full text link
    The schema matching task is an integral part of the data integration process. It is usually the first step in integrating data. Schema matching is typically very complex and time-consuming. It is, therefore, to the largest part, carried out by humans. One reason for the low amount of automation is the fact that schemas are often defined with deep background knowledge that is not itself present within the schemas. Overcoming the problem of missing background knowledge is a core challenge in automating the data integration process. In this dissertation, the task of matching semantic models, so-called ontologies, with the help of external background knowledge is investigated in-depth in Part I. Throughout this thesis, the focus lies on large, general-purpose resources since domain-specific resources are rarely available for most domains. Besides new knowledge resources, this thesis also explores new strategies to exploit such resources. A technical base for the development and comparison of matching systems is presented in Part II. The framework introduced here allows for simple and modularized matcher development (with background knowledge sources) and for extensive evaluations of matching systems. One of the largest structured sources for general-purpose background knowledge are knowledge graphs which have grown significantly in size in recent years. However, exploiting such graphs is not trivial. In Part III, knowledge graph em- beddings are explored, analyzed, and compared. Multiple improvements to existing approaches are presented. In Part IV, numerous concrete matching systems which exploit general-purpose background knowledge are presented. Furthermore, exploitation strategies and resources are analyzed and compared. This dissertation closes with a perspective on real-world applications

    Fine-TOM matcher results for OAEI 2021

    Get PDF
    In this paper, the Fine-Tuned Transformes for Ontology matching (Fine-TOM) matching system is presented along with the results it achieved during its first participation in the Ontology Alignment Evaluation Initiative (OAEI) campaign (2021). The system uses the publicly available albert-base-v2 model, which has been fine-tuned with a training dataset that includes 20% of each reference alignment from the Anatomy, Conference, and Knowledge Graph track, as well as a wide variety of generated false examples. The model is then used by a separate matching pipeline which calculates a confidence score for each correspondence. In the submitted docker container, only the matching pipeline with an already fine-tuned model is included

    Scalable Data Integration for Linked Data

    Get PDF
    Linked Data describes an extensive set of structured but heterogeneous datasources where entities are connected by formal semantic descriptions. In thevision of the Semantic Web, these semantic links are extended towards theWorld Wide Web to provide as much machine-readable data as possible forsearch queries. The resulting connections allow an automatic evaluation to findnew insights into the data. Identifying these semantic connections betweentwo data sources with automatic approaches is called link discovery. We derivecommon requirements and a generic link discovery workflow based on similaritiesbetween entity properties and associated properties of ontology concepts. Mostof the existing link discovery approaches disregard the fact that in times ofBig Data, an increasing volume of data sources poses new demands on linkdiscovery. In particular, the problem of complex and time-consuming linkdetermination escalates with an increasing number of intersecting data sources.To overcome the restriction of pairwise linking of entities, holistic clusteringapproaches are needed to link equivalent entities of multiple data sources toconstruct integrated knowledge bases. In this context, the focus on efficiencyand scalability is essential. For example, reusing existing links or backgroundinformation can help to avoid redundant calculations. However, when dealingwith multiple data sources, additional data quality problems must also be dealtwith. This dissertation addresses these comprehensive challenges by designingholistic linking and clustering approaches that enable reuse of existing links.Unlike previous systems, we execute the complete data integration workflowvia a distributed processing system. At first, the LinkLion portal will beintroduced to provide existing links for new applications. These links act asa basis for a physical data integration process to create a unified representationfor equivalent entities from many data sources. We then propose a holisticclustering approach to form consolidated clusters for same real-world entitiesfrom many different sources. At the same time, we exploit the semantic typeof entities to improve the quality of the result. The process identifies errorsin existing links and can find numerous additional links. Additionally, theentity clustering has to react to the high dynamics of the data. In particular,this requires scalable approaches for continuously growing data sources withmany entities as well as additional new sources. Previous entity clusteringapproaches are mostly static, focusing on the one-time linking and clustering ofentities from few sources. Therefore, we propose and evaluate new approaches for incremental entity clustering that supports the continuous addition of newentities and data sources. To cope with the ever-increasing number of LinkedData sources, efficient and scalable methods based on distributed processingsystems are required. Thus we propose distributed holistic approaches to linkmany data sources based on a clustering of entities that represent the samereal-world object. The implementation is realized on Apache Flink. In contrastto previous approaches, we utilize efficiency-enhancing optimizations for bothdistributed static and dynamic clustering. An extensive comparative evaluationof the proposed approaches with various distributed clustering strategies showshigh effectiveness for datasets from multiple domains as well as scalability on amulti-machine Apache Flink cluster

    Génération automatique d'alignements complexes d'ontologies

    Get PDF
    Le web de données liées (LOD) est composé de nombreux entrepôts de données. Ces données sont décrites par différents vocabulaires (ou ontologies). Chaque ontologie a une terminologie et une modélisation propre ce qui les rend hétérogènes. Pour lier et rendre les données du web de données liées interopérables, les alignements d'ontologies établissent des correspondances entre les entités desdites ontologies. Il existe de nombreux systèmes d'alignement qui génèrent des correspondances simples, i.e., ils lient une entité à une autre entité. Toutefois, pour surmonter l'hétérogénéité des ontologies, des correspondances plus expressives sont parfois nécessaires. Trouver ce genre de correspondances est un travail fastidieux qu'il convient d'automatiser. Dans le cadre de cette thèse, une approche d'alignement complexe basée sur des besoins utilisateurs et des instances communes est proposée. Le domaine des alignements complexes est relativement récent et peu de travaux adressent la problématique de leur évaluation. Pour pallier ce manque, un système d'évaluation automatique basé sur de la comparaison d'instances est proposé. Ce système est complété par un jeu de données artificiel sur le domaine des conférences.The Linked Open Data (LOD) cloud is composed of data repositories. The data in the repositories are described by vocabularies also called ontologies. Each ontology has its own terminology and model. This leads to heterogeneity between them. To make the ontologies and the data they describe interoperable, ontology alignments establish correspondences, or links between their entities. There are many ontology matching systems which generate simple alignments, i.e., they link an entity to another. However, to overcome the ontology heterogeneity, more expressive correspondences are sometimes needed. Finding this kind of correspondence is a fastidious task that can be automated. In this thesis, an automatic complex matching approach based on a user's knowledge needs and common instances is proposed. The complex alignment field is still growing and little work address the evaluation of such alignments. To palliate this lack, we propose an automatic complex alignment evaluation system. This system is based on instances. A famous alignment evaluation dataset has been extended for this evaluation

    Deliverable D9.3 Final Project Report

    Get PDF
    This document comprises the final report of LinkedTV. It includes a publishable summary, a plan for use and dissemination of foreground and a report covering the wider societal implications of the project in the form of a questionnaire
    • …
    corecore