135 research outputs found

    Predictive modelling : flight delays and associated factors hartsfield–Jackson Atlanta international airport

    Get PDF
    Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceAtualmente, um ponto negativo nas viagens de avião são os atrasos que, constantemente, são anunciados aos passageiros resultando numa diminuição da sua satisfação enquanto clientes. Este e outros fatores fazem com que elevados custos, tanto quantitativos como qualitativos sejam imputados às companhias. Consequentemente, existe a necessidade de prever e mitigar a existência de atrasos aéreos que pode ajudar as companhias aéreas bem como aeroportos a melhorar a sua performance e a aplicar algumas medidas, dirigidas ao consumidor, que permitiam atenuar ou até anular o efeito que estes atrasos provoca nos seus passageiros. Deste modo, este estudo tem como principal objetivo prever a ocorrência de atrasos nas chegadas ao aeroporto internacional de Hartsfield-Jackson. Esta estimativa será possível através da elaboração de um modelo preditivo, recorrendo a diversas técnicas de Data Mining. Com a aplicação destas técnicas, foi possível identificar as variáveis que mais contribuíram para a existência do atraso. No desenvolvimento deste trabalho, foi seguida a metodologia da descoberta de conhecimento em base de dados (conhecida em inglês por Knowledge Discovery Database, KDD). Fases como a recolha dos dados, a aplicação de técnicas de amostragem (SMOTE e Undersampling), a partição dos dados em treino e teste, o pré-processamento (dados omissos e outliers) e transformação dos dados (normalização dos dados e seleção de atributos), a definição de modelos a treinar (Decision Trees, Random Forest e Multilayer Perceptron) bem como a avaliação da performance dos modelos através de métricas variadas foram aplicadas. Depois de testar diferentes abordagens, concluiu-se que o melhor modelo é alcançado com as variáveis relacionadas com a partida, usando o algoritmo Multilayer Perceptron e aplicando a técnica de SMOTE para lidar com dados não balanceados, removendo outliers e selecionando dez variáveis usando GainRatio. Por outro lado, quando as variáveis com informação da partida são excluídas, o algoritmo que melhor se destaca é o Multilayer Perceptron usando a técnica SMOTE, mas desta vez, incluindo os outliers e com quinze variáveis selecionadas novamente pelo GainRatio. Em ambas as hipóteses, as variáveis explicativas que mais contribuem para a existência do atraso na chegada são relacionadas com o clima, com as características do avião e com a propagação do atraso. Os resultados do algoritmo de Random Forests mostraram melhor desempenho, em relação à precisão, em comparação com outros autores (Belcastro, Marozzo, Talia, & Trunfio, 2016; Choi, Kim, Briceno, & Mavris, 2016). Contrariamente, o algoritmo Multilayer Perceptron, apresentou menor precisão em comparação com outro estudo equivalente (Y. J. Kim, Choi, Briceno, & Mavris, 2016).Nowadays, a downside to traveling is the delays that are constantly advertised to passengers resulting in a decrease in customer satisfaction. These delays associated with other factors can cause costs, both quantitative and qualitative. Consequently, there is a need to anticipate and mitigate the existence of airborne delays that can help airlines and airports improving their performance or even take some consumer-oriented measures that can undo or attenuate the effect that these delays have on their passengers. This study has as primary objective to predict the occurrence of arrival delays of the international airport of Hartsfield-Jackson. It was possible by building a predictive model, applying several Data Mining techniques. With these applications, it was possible to show the variables, among the proposals, that most contributed to the existence of the delay. In this work, the Knowledge Discovery Database (KDD) methodology was followed. Phases such as data collection; sampling techniques (SMOTE and Undersampling); Data partitioning in training and testing; Pre-processing (missing data and outliers) and data transformation (data normalization and attribute selection); And, finally the definition of models to be trained (Decision Trees, Random Forests, and Multilayer Perceptron), as well as the evaluation of the performance of the models through varied metrics, were used. After testing different approaches, it was concluded that the best model is achieved with the variables related to departure, using the Multilayer Perceptron algorithm and applying SMOTE to deal with unbalanced data, removing outliers and selecting ten variables using GainRatio. On the other hand, when the variables with information of the departure are excluded, the algorithm that performs best is also the Multilayer Perceptron using the SMOTE technique but, this time, including the outliers and with fifteen variables selected again by the GainRatio. On both hypotheses, the explanatory variables that most contributed to the existence of the delay in arrivals were related to the weather, the airplane characteristics and the propagation of the delay. Our results for the Random Forests algorithm shown better performance, regarding accuracy, compared to other authors (Belcastro et al., 2016; Choi et al., 2016). Contrary, for the Multilayer Perceptron algorithm, was presented a lower accuracy compared to another equivalent study (Y. J. Kim et al., 2016)

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited

    Transforming scientific research and development in precision agriculture : the case of hyperspectral sensing and imaging : a thesis presented in partial fulfilment of the requirements for the degree of Doctor in Philosophy in Agriculture at Massey University, Manawatū, New Zealand. EMBARGOED until 30 September 2023.

    Get PDF
    Embargoed until 30 September 2023There has been increasing social and academic debate in recent times surrounding the arrival of agricultural big data. Capturing and responding to real world variability is a defining objective of the rapidly evolving field of precision agriculture (PA). While data have been central to knowledge-making in the field since its inception in the 1980s, research has largely operated in a data-scarce environment, constrained by time-consuming and expensive data collection methods. While there is a rich tradition of studying scientific practice within laboratories in other fields, PA researchers have rarely been the explicit focal point of detailed empirical studies, especially in the laboratory setting. The purpose of this thesis is to contribute to new knowledge of the influence of big data technologies through an ethnographic exploration of a working PA laboratory. The researcher spent over 30 months embedded as a participant observer of a small PA laboratory, where researchers work with nascent data rich remote sensing technologies. To address the research question: “How do the characteristics of technological assemblages affect PA research and development?” the ethnographic case study systematically identifies and responds to the challenges and opportunities faced by the science team as they adapt their scientific processes and resources to refine value from a new data ecosystem. The study describes the ontological characteristics of airborne hyperspectral sensing and imaging data employed by PA researchers. Observations of the researchers at work lead to a previously undescribed shift in the science process, where effort moves from the planning and performance of the data collection stage to the data processing and analysis stage. The thesis develops an argument that changing data characteristics are central to this shift in the scientific method researchers are employing to refine knowledge and value from research projects. Importantly, the study reveals that while researchers are working in a rapidly changing environment, there is little reflection on the implications of these changes on the practice of science-making. The study also identifies a disjunction to how science is done in the field, and what is reported. We discover that the practices that provide disciplinary ways of doing science are not established in this field and moments to learn are siloed because of commercial constraints the commercial structures imposed in this case study of contemporary PA research

    Toward a Bio-Inspired System Architecting Framework: Simulation of the Integration of Autonomous Bus Fleets & Alternative Fuel Infrastructures in Closed Sociotechnical Environments

    Get PDF
    Cities are set to become highly interconnected and coordinated environments composed of emerging technologies meant to alleviate or resolve some of the daunting issues of the 21st century such as rapid urbanization, resource scarcity, and excessive population demand in urban centers. These cybernetically-enabled built environments are expected to solve these complex problems through the use of technologies that incorporate sensors and other data collection means to fuse and understand large sums of data/information generated from other technologies and its human population. Many of these technologies will be pivotal assets in supporting and managing capabilities in various city sectors ranging from energy to healthcare. However, among these sectors, a significant amount of attention within the recent decade has been in the transportation sector due to the flood of new technological growth and cultivation, which is currently seeing extensive research, development, and even implementation of emerging technologies such as autonomous vehicles (AVs), the Internet of Things (IoT), alternative xxxvi fueling sources, clean propulsion technologies, cloud/edge computing, and many other technologies. Within the current body of knowledge, it is fairly well known how many of these emerging technologies will perform in isolation as stand-alone entities, but little is known about their performance when integrated into a transportation system with other emerging technologies and humans within the system organization. This merging of new age technologies and humans can make analyzing next generation transportation systems extremely complex to understand. Additionally, with new and alternative forms of technologies expected to come in the near-future, one can say that the quantity of technologies, especially in the smart city context, will consist of a continuously expanding array of technologies whose capabilities will increase with technological advancements, which can change the performance of a given system architecture. Therefore, the objective of this research is to understand the system architecture implications of integrating different alternative fueling infrastructures with autonomous bus (AB) fleets in the transportation system within a closed sociotechnical environment. By being able to understand the system architecture implications of alternative fueling infrastructures and AB fleets, this could provide performance-based input into a more sophisticated approach or framework which is proposed as a future work of this research
    corecore