70 research outputs found

    Logic-based Technologies for Intelligent Systems: State of the Art and Perspectives

    Get PDF
    Together with the disruptive development of modern sub-symbolic approaches to artificial intelligence (AI), symbolic approaches to classical AI are re-gaining momentum, as more and more researchers exploit their potential to make AI more comprehensible, explainable, and therefore trustworthy. Since logic-based approaches lay at the core of symbolic AI, summarizing their state of the art is of paramount importance now more than ever, in order to identify trends, benefits, key features, gaps, and limitations of the techniques proposed so far, as well as to identify promising research perspectives. Along this line, this paper provides an overview of logic-based approaches and technologies by sketching their evolution and pointing out their main application areas. Future perspectives for exploitation of logic-based technologies are discussed as well, in order to identify those research fields that deserve more attention, considering the areas that already exploit logic-based approaches as well as those that are more likely to adopt logic-based approaches in the future

    Neural network for estimating and compensating the nonlinear characteristics of nonstationary complex systems

    Get PDF
    Issued as final reportNational Science Foundation (U.S

    Process mining meets model learning: Discovering deterministic finite state automata from event logs for business process analysis

    Get PDF
    Within the process mining field, Deterministic Finite State Automata (DFAs) are largely employed as foundation mechanisms to perform formal reasoning tasks over the information contained in the event logs, such as conformance checking, compliance monitoring and cross-organization process analysis, just to name a few. To support the above use cases, in this paper, we investigate how to leverage Model Learning (ML) algorithms for the automated discovery of DFAs from event logs. DFAs can be used as a fundamental building block to support not only the development of process analysis techniques, but also the implementation of instruments to support other phases of the Business Process Management (BPM) lifecycle such as business process design and enactment. The quality of the discovered DFAs is assessed wrt customized definitions of fitness, precision, generalization, and a standard notion of DFA simplicity. Finally, we use these metrics to benchmark ML algorithms against real-life and synthetically generated datasets, with the aim of studying their performance and investigate their suitability to be used for the development of BPM tools

    Leveraging Large Language Models (LLMs) for Process Mining (Technical Report)

    Full text link
    This technical report describes the intersection of process mining and large language models (LLMs), specifically focusing on the abstraction of traditional and object-centric process mining artifacts into textual format. We introduce and explore various prompting strategies: direct answering, where the large language model directly addresses user queries; multi-prompt answering, which allows the model to incrementally build on the knowledge obtained through a series of prompts; and the generation of database queries, facilitating the validation of hypotheses against the original event log. Our assessment considers two large language models, GPT-4 and Google's Bard, under various contextual scenarios across all prompting strategies. Results indicate that these models exhibit a robust understanding of key process mining abstractions, with notable proficiency in interpreting both declarative and procedural process models. In addition, we find that both models demonstrate strong performance in the object-centric setting, which could significantly propel the advancement of the object-centric process mining discipline. Additionally, these models display a noteworthy capacity to evaluate various concepts of fairness in process mining. This opens the door to more rapid and efficient assessments of the fairness of process mining event logs, which has significant implications for the field. The integration of these large language models into process mining applications may open new avenues for exploration, innovation, and insight generation in the field

    Classification of Explainable Artificial Intelligence Methods through Their Output Formats

    Get PDF
    Machine and deep learning have proven their utility to generate data-driven models with high accuracy and precision. However, their non-linear, complex structures are often difficult to interpret. Consequently, many scholars have developed a plethora of methods to explain their functioning and the logic of their inferences. This systematic review aimed to organise these methods into a hierarchical classification system that builds upon and extends existing taxonomies by adding a significant dimension—the output formats. The reviewed scientific papers were retrieved by conducting an initial search on Google Scholar with the keywords “explainable artificial intelligence”; “explainable machine learning”; and “interpretable machine learning”. A subsequent iterative search was carried out by checking the bibliography of these articles. The addition of the dimension of the explanation format makes the proposed classification system a practical tool for scholars, supporting them to select the most suitable type of explanation format for the problem at hand. Given the wide variety of challenges faced by researchers, the existing XAI methods provide several solutions to meet the requirements that differ considerably between the users, problems and application fields of artificial intelligence (AI). The task of identifying the most appropriate explanation can be daunting, thus the need for a classification system that helps with the selection of methods. This work concludes by critically identifying the limitations of the formats of explanations and by providing recommendations and possible future research directions on how to build a more generally applicable XAI method. Future work should be flexible enough to meet the many requirements posed by the widespread use of AI in several fields, and the new regulation

    Mediating between modeled and observed behavior : the quest for the "right" process

    Get PDF
    Operational processes leave trails in the information systems supporting them. Such event data are the starting point for process mining – an emerging scienti¿c discipline relating modeled and observed behavior. Whereas an event log describes example behavior of the underlying process, a process model aims to describe an abstraction of the same process. Models may be descriptive or normative. Descriptive models aim to describe the underlying process and are used for discussion, performance analysis, obtaining insights, and prediction. Normative models describe the desired behavior and are used for work¿ow management, system con¿guration, auditing, compliance management, and conformance checking. Differences between modeled and observed behavior may point to undesirable deviations or inadequate models. In this paper, we discuss challenges related to ¿nding the "right" process, i.e., the process model that describes the real underlying process or a process that behaves as desired
    • …
    corecore