189 research outputs found

    Comparing and Combining Lexicase Selection and Novelty Search

    Full text link
    Lexicase selection and novelty search, two parent selection methods used in evolutionary computation, emphasize exploring widely in the search space more than traditional methods such as tournament selection. However, lexicase selection is not explicitly driven to select for novelty in the population, and novelty search suffers from lack of direction toward a goal, especially in unconstrained, highly-dimensional spaces. We combine the strengths of lexicase selection and novelty search by creating a novelty score for each test case, and adding those novelty scores to the normal error values used in lexicase selection. We use this new novelty-lexicase selection to solve automatic program synthesis problems, and find it significantly outperforms both novelty search and lexicase selection. Additionally, we find that novelty search has very little success in the problem domain of program synthesis. We explore the effects of each of these methods on population diversity and long-term problem solving performance, and give evidence to support the hypothesis that novelty-lexicase selection resists converging to local optima better than lexicase selection

    Semantic variation operators for multidimensional genetic programming

    Full text link
    Multidimensional genetic programming represents candidate solutions as sets of programs, and thereby provides an interesting framework for exploiting building block identification. Towards this goal, we investigate the use of machine learning as a way to bias which components of programs are promoted, and propose two semantic operators to choose where useful building blocks are placed during crossover. A forward stagewise crossover operator we propose leads to significant improvements on a set of regression problems, and produces state-of-the-art results in a large benchmark study. We discuss this architecture and others in terms of their propensity for allowing heuristic search to utilize information during the evolutionary process. Finally, we look at the collinearity and complexity of the data representations that result from these architectures, with a view towards disentangling factors of variation in application.Comment: 9 pages, 8 figures, GECCO 201

    Evolved embodied phase coordination enables robust quadruped robot locomotion

    Full text link
    Overcoming robotics challenges in the real world requires resilient control systems capable of handling a multitude of environments and unforeseen events. Evolutionary optimization using simulations is a promising way to automatically design such control systems, however, if the disparity between simulation and the real world becomes too large, the optimization process may result in dysfunctional real-world behaviors. In this paper, we address this challenge by considering embodied phase coordination in the evolutionary optimization of a quadruped robot controller based on central pattern generators. With this method, leg phases, and indirectly also inter-leg coordination, are influenced by sensor feedback.By comparing two very similar control systems we gain insight into how the sensory feedback approach affects the evolved parameters of the control system, and how the performances differs in simulation, in transferal to the real world, and to different real-world environments. We show that evolution enables the design of a control system with embodied phase coordination which is more complex than previously seen approaches, and that this system is capable of controlling a real-world multi-jointed quadruped robot.The approach reduces the performance discrepancy between simulation and the real world, and displays robustness towards new environments.Comment: 9 page

    Spatial Evolutionary Generative Adversarial Networks

    Full text link
    Generative adversary networks (GANs) suffer from training pathologies such as instability and mode collapse. These pathologies mainly arise from a lack of diversity in their adversarial interactions. Evolutionary generative adversarial networks apply the principles of evolutionary computation to mitigate these problems. We hybridize two of these approaches that promote training diversity. One, E-GAN, at each batch, injects mutation diversity by training the (replicated) generator with three independent objective functions then selecting the resulting best performing generator for the next batch. The other, Lipizzaner, injects population diversity by training a two-dimensional grid of GANs with a distributed evolutionary algorithm that includes neighbor exchanges of additional training adversaries, performance based selection and population-based hyper-parameter tuning. We propose to combine mutation and population approaches to diversity improvement. We contribute a superior evolutionary GANs training method, Mustangs, that eliminates the single loss function used across Lipizzaner's grid. Instead, each training round, a loss function is selected with equal probability, from among the three E-GAN uses. Experimental analyses on standard benchmarks, MNIST and CelebA, demonstrate that Mustangs provides a statistically faster training method resulting in more accurate networks

    Algorithm Portfolio for Individual-based Surrogate-Assisted Evolutionary Algorithms

    Full text link
    Surrogate-assisted evolutionary algorithms (SAEAs) are powerful optimisation tools for computationally expensive problems (CEPs). However, a randomly selected algorithm may fail in solving unknown problems due to no free lunch theorems, and it will cause more computational resource if we re-run the algorithm or try other algorithms to get a much solution, which is more serious in CEPs. In this paper, we consider an algorithm portfolio for SAEAs to reduce the risk of choosing an inappropriate algorithm for CEPs. We propose two portfolio frameworks for very expensive problems in which the maximal number of fitness evaluations is only 5 times of the problem's dimension. One framework named Par-IBSAEA runs all algorithm candidates in parallel and a more sophisticated framework named UCB-IBSAEA employs the Upper Confidence Bound (UCB) policy from reinforcement learning to help select the most appropriate algorithm at each iteration. An effective reward definition is proposed for the UCB policy. We consider three state-of-the-art individual-based SAEAs on different problems and compare them to the portfolios built from their instances on several benchmark problems given limited computation budgets. Our experimental studies demonstrate that our proposed portfolio frameworks significantly outperform any single algorithm on the set of benchmark problems

    Tile Pattern KL-Divergence for Analysing and Evolving Game Levels

    Full text link
    This paper provides a detailed investigation of using the Kullback-Leibler (KL) Divergence as a way to compare and analyse game-levels, and hence to use the measure as the objective function of an evolutionary algorithm to evolve new levels. We describe the benefits of its asymmetry for level analysis and demonstrate how (not surprisingly) the quality of the results depends on the features used. Here we use tile-patterns of various sizes as features. When using the measure for evolution-based level generation, we demonstrate that the choice of variation operator is critical in order to provide an efficient search process, and introduce a novel convolutional mutation operator to facilitate this. We compare the results with alternative generators, including evolving in the latent space of generative adversarial networks, and Wave Function Collapse. The results clearly show the proposed method to provide competitive performance, providing reasonable quality results with very fast training and reasonably fast generation.Comment: 8 pages plus references. Proceedings of GECCO 201
    • …
    corecore