18 research outputs found

    Overview of the SPMRL 2013 shared task: cross-framework evaluation of parsing morphologically rich languages

    Get PDF
    This paper reports on the first shared task on statistical parsing of morphologically rich languages (MRLs). The task features data sets from nine languages, each available both in constituency and dependency annotation. We report on the preparation of the data sets, on the proposed parsing scenarios, and on the evaluation metrics for parsing MRLs given different representation types. We present and analyze parsing results obtained by the task participants, and then provide an analysis and comparison of the parsers across languages and frameworks, reported for gold input as well as more realistic parsing scenarios

    Discontinuous grammar as a foreign language

    Get PDF
    [Abstract] In order to achieve deep natural language understanding, syntactic constituent parsing is a vital step, highly demanded by many artificial intelligence systems to process both text and speech. One of the most recent proposals is the use of standard sequence-to-sequence models to perform constituent parsing as a machine translation task, instead of applying task-specific parsers. While they show a competitive performance, these text-to-parse transducers are still lagging behind classic techniques in terms of accuracy, coverage and speed. To close the gap, we here extend the framework of sequence-to-sequence models for constituent parsing, not only by providing a more powerful neural architecture for improving their performance, but also by enlarging their coverage to handle the most complex syntactic phenomena: discontinuous structures. To that end, we design several novel linearizations that can fully produce discontinuities and, for the first time, we test a sequence-to-sequence model on the main discontinuous benchmarks, obtaining competitive results on par with task-specific discontinuous constituent parsers and achieving state-of-the-art scores on the (discontinuous) English Penn Treebank.Xunta de Galicia; ED431G 2019/01Xunta de Galicia; ED431C 2020/11We acknowledge the European Research Council (ERC), which has funded this research under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, grant agreement No 714150) and the Horizon Europe research and innovation programme (SALSA, grant agreement No 101100615), ERDF/ MICINN-AEI (SCANNER-UDC, PID2020-113230RB-C21), Xunta de Galicia (ED431C 2020/11), and Centro de Investigación de Galicia ‘‘CITIC”, funded by Xunta de Galicia and the European Union (ERDF - Galicia 2014–2020 Program), by grant ED431G 2019/01. Funding for open access charge: Universidade da Coruña/CISUG

    Exploiting word embeddings for modeling bilexical relations

    Get PDF
    There has been an exponential surge of text data in the recent years. As a consequence, unsupervised methods that make use of this data have been steadily growing in the field of natural language processing (NLP). Word embeddings are low-dimensional vectors obtained using unsupervised techniques on the large unlabelled corpora, where words from the vocabulary are mapped to vectors of real numbers. Word embeddings aim to capture syntactic and semantic properties of words. In NLP, many tasks involve computing the compatibility between lexical items under some linguistic relation. We call this type of relation a bilexical relation. Our thesis defines statistical models for bilexical relations that centrally make use of word embeddings. Our principle aim is that the word embeddings will favor generalization to words not seen during the training of the model. The thesis is structured in four parts. In the first part of this thesis, we present a bilinear model over word embeddings that leverages a small supervised dataset for a binary linguistic relation. Our learning algorithm exploits low-rank bilinear forms and induces a low-dimensional embedding tailored for a target linguistic relation. This results in compressed task-specific embeddings. In the second part of our thesis, we extend our bilinear model to a ternary setting and propose a framework for resolving prepositional phrase attachment ambiguity using word embeddings. Our models perform competitively with state-of-the-art models. In addition, our method obtains significant improvements on out-of-domain tests by simply using word-embeddings induced from source and target domains. In the third part of this thesis, we further extend the bilinear models for expanding vocabulary in the context of statistical phrase-based machine translation. Our model obtains a probabilistic list of possible translations of target language words, given a word in the source language. We do this by projecting pre-trained embeddings into a common subspace using a log-bilinear model. We empirically notice a significant improvement on an out-of-domain test set. In the final part of our thesis, we propose a non-linear model that maps initial word embeddings to task-tuned word embeddings, in the context of a neural network dependency parser. We demonstrate its use for improved dependency parsing, especially for sentences with unseen words. We also show downstream improvements on a sentiment analysis task.En els darrers anys hi ha hagut un sorgiment notable de dades en format textual. Conseqüentment, en el camp del Processament del Llenguatge Natural (NLP, de l'anglès "Natural Language Processing") s'han desenvolupat mètodes no supervistats que fan ús d'aquestes dades. Els anomenats "word embeddings", o embeddings de paraules, són vectors de dimensionalitat baixa que s'obtenen mitjançant tècniques no supervisades aplicades a corpus textuals de grans volums. Com a resultat, cada paraula del diccionari es correspon amb un vector de nombres reals, el propòsit del qual és capturar propietats sintàctiques i semàntiques de la paraula corresponent. Moltes tasques de NLP involucren calcular la compatibilitat entre elements lèxics en l'àmbit d'una relació lingüística. D'aquest tipus de relació en diem relació bilèxica. Aquesta tesi proposa models estadístics per a relacions bilèxiques que fan ús central d'embeddings de paraules, amb l'objectiu de millorar la generalització del model lingüístic a paraules no vistes durant l'entrenament. La tesi s'estructura en quatre parts. A la primera part presentem un model bilineal sobre embeddings de paraules que explota un conjunt petit de dades anotades sobre una relaxió bilèxica. L'algorisme d'aprenentatge treballa amb formes bilineals de poc rang, i indueix embeddings de poca dimensionalitat que estan especialitzats per la relació bilèxica per la qual s'han entrenat. Com a resultat, obtenim embeddings de paraules que corresponen a compressions d'embeddings per a una relació determinada. A la segona part de la tesi proposem una extensió del model bilineal a trilineal, i amb això proposem un nou model per a resoldre ambigüitats de sintagmes preposicionals que usa només embeddings de paraules. En una sèrie d'avaluacións, els nostres models funcionen de manera similar a l'estat de l'art. A més, el nostre mètode obté millores significatives en avaluacions en textos de dominis diferents al d'entrenament, simplement usant embeddings induïts amb textos dels dominis d'entrenament i d'avaluació. A la tercera part d'aquesta tesi proposem una altra extensió dels models bilineals per ampliar la cobertura lèxica en el context de models estadístics de traducció automàtica. El nostre model probabilístic obté, donada una paraula en la llengua d'origen, una llista de possibles traduccions en la llengua de destí. Fem això mitjançant una projecció d'embeddings pre-entrenats a un sub-espai comú, usant un model log-bilineal. Empíricament, observem una millora significativa en avaluacions en dominis diferents al d'entrenament. Finalment, a la quarta part de la tesi proposem un model no lineal que indueix una correspondència entre embeddings inicials i embeddings especialitzats, en el context de tasques d'anàlisi sintàctica de dependències amb models neuronals. Mostrem que aquest mètode millora l'analisi de dependències, especialment en oracions amb paraules no vistes durant l'entrenament. També mostrem millores en un tasca d'anàlisi de sentiment

    ELECTRA for Neural Coreference Resolution in Italian

    Get PDF
    In recent years, the impact of Neural Language Models has changed every field of Natural Language Processing. In this scenario, coreference resolution has been among the least considered task, especially in language other than English. This work proposes a coreference resolution system for Italian, based on a neural end-to-end architecture integrating ELECTRA language model and trained on OntoCorefIT, a novel Italian dataset built starting from OntoNotes. Even if some approaches for Italian have been proposed in the last decade, to the best of our knowledge, this is the first neural coreference resolver aimed specifically to Italian. The performance of the system is evaluated with respect to three different metrics and also assessed by replacing ELECTRA with the widely-used BERT language model, since its usage has proven to be effective in the coreference resolution task in English. A qualitative analysis has also been conducted, showing how different grammatical categories affect performance in an inflectional and morphological-rich language like Italian. The overall results have shown the effectiveness of the proposed solution, providing a baseline for future developments of this line of research in Italian

    Unsupervised Methods for Learning and Using Semantics of Natural Language

    Get PDF
    Teaching the computer to understand language is the major goal in the field of natural language processing. In this thesis we introduce computational methods that aim to extract language structure — e.g. grammar, semantics or syntax — from text, which provides the computer with information in order to understand language. During the last decades, scientific efforts and the increase of computational resources made it possible to come closer to the goal of understanding language. In order to extract language structure, many approaches train the computer on manually created resources. Most of these so-called supervised methods show high performance when applied to similar textual data. However, they perform inferior when operating on textual data, which are different to the one they are trained on. Whereas training the computer is essential to obtain reasonable structure from natural language, we want to avoid training the computer using manually created resources. In this thesis, we present so-called unsupervised methods, which are suited to learn patterns in order to extract structure from textual data directly. These patterns are learned with methods that extract the semantics (meanings) of words and phrases. In comparison to manually built knowledge bases, unsupervised methods are more flexible: they can extract structure from text of different languages or text domains (e.g. finance or medical texts), without requiring manually annotated structure. However, learning structure from text often faces sparsity issues. The reason for these phenomena is that in language many words occur only few times. If a word is seen only few times no precise information can be extracted from the text it occurs. Whereas sparsity issues cannot be solved completely, information about most words can be gained by using large amounts of data. In the first chapter, we briefly describe how computers can learn to understand language. Afterwards, we present the main contributions, list the publications this thesis is based on and give an overview of this thesis. Chapter 2 introduces the terminology used in this thesis and gives a background about natural language processing. Then, we characterize the linguistic theory on how humans understand language. Afterwards, we show how the underlying linguistic intuition can be operationalized for computers. Based on this operationalization, we introduce a formalism for representing words and their context. This formalism is used in the following chapters in order to compute similarities between words. In Chapter 3 we give a brief description of methods in the field of computational semantics, which are targeted to compute similarities between words. All these methods have in common that they extract a contextual representation for a word that is generated from text. Then, this representation is used to compute similarities between words. In addition, we also present examples of the word similarities that are computed with these methods. Segmenting text into its topically related units is intuitively performed by humans and helps to extract connections between words in text. We equip the computer with these abilities by introducing a text segmentation algorithm in Chapter 4. This algorithm is based on a statistical topic model, which learns to cluster words into topics solely on the basis of the text. Using the segmentation algorithm, we demonstrate the influence of the parameters provided by the topic model. In addition, our method yields state-of-the-art performances on two datasets. In order to represent the meaning of words, we use context information (e.g. neighboring words), which is utilized to compute similarities. Whereas we described methods for word similarity computations in Chapter 3, we introduce a generic symbolic framework in Chapter 5. As we follow a symbolic approach, we do not represent words using dense numeric vectors but we use symbols (e.g. neighboring words or syntactic dependency parses) directly. Such a representation is readable for humans and is preferred in sensitive applications like the medical domain, where the reason for decisions needs to be provided. This framework enables the processing of arbitrarily large data. Furthermore, it is able to compute the most similar words for all words within a text collection resulting in a distributional thesaurus. We show the influence of various parameters deployed in our framework and examine the impact of different corpora used for computing similarities. Performing computations based on various contextual representations, we obtain the best results when using syntactic dependencies between words within sentences. However, these syntactic dependencies are predicted using a supervised dependency parser, which is trained on language-dependent and human-annotated resources. To avoid such language-specific preprocessing for computing distributional thesauri, we investigate the replacement of language-dependent dependency parsers by language-independent unsupervised parsers in Chapter 6. Evaluating the syntactic dependencies from unsupervised and supervised parses against human-annotated resources reveals that the unsupervised methods are not capable to compete with the supervised ones. In this chapter we use the predicted structure of both types of parses as context representation in order to compute word similarities. Then, we evaluate the quality of the similarities, which provides an extrinsic evaluation setup for both unsupervised and supervised dependency parsers. In an evaluation on English text, similarities computed based on contextual representations generated with unsupervised parsers do not outperform the similarities computed with the context representation extracted from supervised parsers. However, we observe the best results when applying context retrieved by the unsupervised parser for computing distributional thesauri on German language. Furthermore, we demonstrate that our framework is capable to combine different context representations, as we obtain the best performance with a combination of both flavors of syntactic dependencies for both languages. Most languages are not composed of single-worded terms only, but also contain many multi-worded terms that form a unit, called multiword expressions. The identification of multiword expressions is particularly important for semantics, as e.g. the term New York has a different meaning than its single terms New or York. Whereas most research on semantics avoids handling these expressions, we target on the extraction of multiword expressions in Chapter 7. Most previously introduced methods rely on part-of-speech tags and apply a ranking function to rank term sequences according to their multiwordness. Here, we introduce a language-independent and knowledge-free ranking method that uses information from distributional thesauri. Performing evaluations on English and French textual data, our method achieves the best results in comparison to methods from the literature. In Chapter 8 we apply information from distributional thesauri as features for various applications. First, we introduce a general setting for tackling the out-of-vocabulary problem. This problem describes the inferior performance of supervised methods according to words that are not contained in the training data. We alleviate this issue by replacing these unseen words with the most similar ones that are known, extracted from a distributional thesaurus. Using a supervised part-of-speech tagging method, we show substantial improvements in the classification performance for out-of-vocabulary words based on German and English textual data. The second application introduces a system for replacing words within a sentence with a word of the same meaning. For this application, the information from a distributional thesaurus provides the highest-scoring features. In the last application, we introduce an algorithm that is capable to detect the different meanings of a word and groups them into coarse-grained categories, called supersenses. Generating features by means of supersenses and distributional thesauri yields an performance increase when plugged into a supervised system that recognized named entities (e.g. names, organizations or locations). Further directions for using distributional thesauri are presented in Chapter 9. First, we lay out a method, which is capable of incorporating background information (e.g. source of the text collection or sense information) into a distributional thesaurus. Furthermore, we describe an approach on building thesauri for different text domains (e.g. medical or finance domain) and how they can be combined to have a high coverage of domain-specific knowledge as well as a broad background for the open domain. In the last section we characterize yet another method, suited to enrich existing knowledge bases. All three directions might be further extensions, which induce further structure based on textual data. The last chapter gives a summary of this work: we demonstrate that without language-dependent knowledge, a computer can learn to extract useful structure from text by using computational semantics. Due to the unsupervised nature of the introduced methods, we are able to extract new structure from raw textual data. This is important especially for languages, for which less manually created resources are available as well as for special domains e.g. medical or finance. We have demonstrated that our methods achieve state-of-the-art performance. Furthermore, we have proven their impact by applying the extracted structure in three natural language processing tasks. We have also applied the methods to different languages and large amounts of data. Thus, we have not proposed methods, which are suited for extracting structure for a single language, but methods that are capable to explore structure for “language” in general

    Error propagation

    Get PDF

    Korreferentzia-ebazpena euskarazko testuetan.

    Get PDF
    203 p.Gaur egun, korreferentzia-ebazpen automatikoa gakotzat har dezakegu testuak ulertuahal izateko; ondorioz, behar-beharrezkoa da diskurtsoaren ulerkuntza sakona eskatzenduten Lengoaia Naturalaren Prozesamenduko (NLP) hainbat atazatan.Testu bateko bi espresio testualek objektu berbera adierazi edo erreferentziatzendutenean, bi espresio horien artean korreferentzia-erlazio bat dagoela esan ohi da. Testubatean ager daitezkeen espresio testual horien arteko korreferentzia-erlazioak ebazteahelburu duen atazari korreferentzia-ebazpena deritzo.Tesi-lan hau, hizkuntzalaritza konputazionalaren arloan kokatzen da eta euskarazidatzitako testuen korreferentzia-ebazpen automatikoa du helburu, zehazkiago esanda,euskarazko korreferentzia-ebazpen automatikoa gauzatzeko dagoen baliabide eta tresnenhutsunea betetzea du helburu.Tesi-lan honetan, lehenik euskarazko testuetan ager daitezkeen espresio testualakautomatikoki identifikatzeko garatu dugun erregelatan oinarritutako tresna azaltzen da.Ondoren, Stanfordeko unibertsitatean ingeleserako diseinatu den erregelatanoinarritutako korreferentzia-ebazpenerako sistema euskararen ezaugarrietara nolaegokitu den eta ezagutza-base semantikoak erabiliz nola hobetu dugun aurkezten da.Bukatzeko, ikasketa automatikoan oinarritzen den BART korreferentzia-ebazpenerakosistema euskarara egokitzeko eta hobetzeko egindako lana azaltzen da

    Irish dependency treebanking and parsing

    Get PDF
    Despite enjoying the status of an official EU language, Irish is considered a minority language. As with most minority languages, it is a `low-density' language, which means it lacks important linguistic and Natural Language Processing (NLP) resources. Relative to better-resourced languages such as English or French, for example, little research has been carried out on computational analysis or processing of Irish. Parsing is the method of analysing the linguistic structure of text, and it is an invaluable processing step that is required for many different types of language technology applications. As a verb-initial language, Irish has several features that are uncharacteristic of many languages previously studied in parsing research. Our work broadens the application of NLP methods to less studied language structures and provides a basis on which future work in Irish NLP is possible. We report on the development of a dependency treebank that serves as training data for the first full Irish dependency parser. We discuss the linguistic structures of Irish, and the motivation behind the design of our annotation scheme. Our work also examines various methods of employing semi-automated approaches to treebank development. We overcome the relatively small pool of linguistic and technological resources available for the Irish language with these approaches, and show that even in early stages of development, parsing results for Irish are promising. What counts as a sufficient number of trees for training a parser varies according to languages. Through empirical methods, we explore the impact our treebank's size and content has on parsing accuracy for Irish. We also discuss our work in crosslingual studies through converting our treebank to a universal annotation scheme. Finally we extend our Irish NLP work to the unstructured user-generated text of Irish tweets. We report on the creation of a POS-tagged corpus of Irish tweets and the training of statistical POS-tagging models. We show how existing resources can be leveraged for this domain-adapted resource development

    Unsupervised Induction of Frame-Based Linguistic Forms

    Get PDF
    This thesis studies the use of bulk, structured, linguistic annotations in order to perform unsupervised induction of meaning for three kinds of linguistic forms: words, sentences, and documents. The primary linguistic annotation I consider throughout this thesis are frames, which encode core linguistic, background or societal knowledge necessary to understand abstract concepts and real-world situations. I begin with an overview of linguistically-based structured meaning representation; I then analyze available large-scale natural language processing (NLP) and linguistic resources and corpora for their abilities to accommodate bulk, automatically-obtained frame annotations. I then proceed to induce meanings of the different forms, progressing from the word level, to the sentence level, and finally to the document level. I first show how to use these bulk annotations in order to better encode linguistic- and cognitive science backed semantic expectations within word forms. I then demonstrate a straightforward approach for learning large lexicalized and refined syntactic fragments, which encode and memoize commonly used phrases and linguistic constructions. Next, I consider two unsupervised models for document and discourse understanding; one is a purely generative approach that naturally accommodates layer annotations and is the first to capture and unify a complete frame hierarchy. The other conditions on limited amounts of external annotations, imputing missing values when necessary, and can more readily scale to large corpora. These discourse models help improve document understanding and type-level understanding
    corecore