17 research outputs found

    Applying MDA and OMG Robotic Specification for Developing Robotic Systems

    Get PDF
    Robotics systems have special needs often related with their realtime nature and environmental properties. Often, control and communication paths within the system are tightly coupled to the actual physical configuration of the robot. As a consequence, these robots can only be assembled, configured, and programmed by robot experts. Traditional approaches, based on mainly writing the code without using software engineering techniques, are still used in the development process of these systems. Even when these robotic systems are successfully used, several problems can be identified and it is widely accepted that new approaches should be explored. The contribution of this research consists in delineating guidelines for the construction of robotic software systems, taking advantage of the application of the OMG standard robotic specifications which adhere to the model-driven approach MDA. Thereby the expert knowledge is captured in standard abstract models that can then be reused by other less experienced developers. In addition part of the code is automatically generated, reducing costs and improving quality.Laboratorio de Investigación y Formación en Informática Avanzad

    Applying MDA and OMG Robotic Specification for Developing Robotic Systems

    Get PDF
    Robotics systems have special needs often related with their realtime nature and environmental properties. Often, control and communication paths within the system are tightly coupled to the actual physical configuration of the robot. As a consequence, these robots can only be assembled, configured, and programmed by robot experts. Traditional approaches, based on mainly writing the code without using software engineering techniques, are still used in the development process of these systems. Even when these robotic systems are successfully used, several problems can be identified and it is widely accepted that new approaches should be explored. The contribution of this research consists in delineating guidelines for the construction of robotic software systems, taking advantage of the application of the OMG standard robotic specifications which adhere to the model-driven approach MDA. Thereby the expert knowledge is captured in standard abstract models that can then be reused by other less experienced developers. In addition part of the code is automatically generated, reducing costs and improving quality

    Model-driven engineering for mobile robotic systems: a systematic mapping study

    Get PDF
    Mobile robots operate in various environments (e.g. aquatic, aerial, or terrestrial), they come in many diverse shapes and they are increasingly becoming parts of our lives. The successful engineering of mobile robotics systems demands the interdisciplinary collaboration of experts from different domains, such as mechanical and electrical engineering, artificial intelligence, and systems engineering. Research and industry have tried to tackle this heterogeneity by proposing a multitude of model-driven solutions to engineer the software of mobile robotics systems. However, there is no systematic study of the state of the art in model-driven engineering (MDE) for mobile robotics systems that could guide research or practitioners in finding model-driven solutions and tools to efficiently engineer mobile robotics systems. The paper is contributing to this direction by providing a map of software engineering research in MDE that investigates (1) which types of robots are supported by existing MDE approaches, (2) the types and characteristics of MRSs that are engineered using MDE approaches, (3) a description of how MDE approaches support the engineering of MRSs, (4) how existing MDE approaches are validated, and (5) how tools support existing MDE approaches. We also provide a replication package to assess, extend, and/or replicate the study. The results of this work and the highlighted challenges can guide researchers and practitioners from robotics and software engineering through the research landscape

    Model Variations and Automated Refinement of Domain-Specific Modeling Languages for Robot-Motion Control

    Get PDF
    This paper presents an approach to handling frequent variations of modeling languages and models. The approach is based on Domain-Specific Modeling and linking of modeling tools with adaptive Run-Time Systems. The applicability of our solution is illustrated on an example of domain-specific languages for robot control. Special attention was given to the following problems: 1) model-level debugging; 2) performing fast transformation of models to native code for various hardware platforms and operating systems; and 3) specification of views and view-based generation of applications for validation of meta-models, models, and generated code. The feedback for automated refinement of models and meta-models is provided by a custom adaptive Run-Time System. For the purpose of synchronizing models, meta-models, and the target Run-Time System, we introduce action reports, which allow model-level debugging. In order to simplify handling of frequent model variations, we have introduced the linguistic concept of a modifier

    An Evaluation of the DiaSuite Toolset by Professional Developers: Learning Cost and Usability

    Get PDF
    International audienceThis paper evaluates a design-driven, tool-based approach, named DiaSuite, dedicated to developing applications involving sensors and actuators. Specifically, we evaluate the usability and the learning cost of DiaSuite as a first step to assess the potential for transferring this technology to the industrial practice of this domain. We assess the cost of learning DiaSuite by involving four professional programmers in a usability study involving a software engineering task. This experiment brings preliminary evidence that the DiaSuite technology can be used effectively by professional developers after only half a day of training. We then present qualitative data about the usage and usability of DiaSuite, collected from developers, via questionnaires and interviews. Finally, we discuss lessons learned from this work

    A user study on personalized stiffness control and task specificity in physical Human-Robot Interaction

    Get PDF
    Gopinathan S, Ötting SK, Steil JJ. A user study on personalized stiffness control and task specificity in physical Human-Robot Interaction. Frontiers in Robotics and AI. 2017;4: 58.An ideal physical human–robot interaction (pHRI) should offer the users robotic systems that are easy to handle, intuitive to use, ergonomic and adaptive to human habits and preferences. But the variance in the user behavior is often high and rather unpredictable, which hinders the development of such systems. This article introduces a Personalized Adaptive Stiffness controller for pHRI that is calibrated for the user’s force profile and validates its performance in an extensive user study with 49 participants on two different tasks. The user study compares the new scheme to conventional fixed stiffness or gravitation compensation controllers on the 7-DOF KUKA LWR IVb by employing two typical joint-manipulation tasks. The results clearly point out the importance of considering task specific parameters and human specific parameters while designing control modes for pHRI. The analysis shows that for simpler tasks a standard fixed controller may perform sufficiently well and that respective task dependency strongly prevails over individual differences. In the more complex task, quantitative and qualitative results reveal differences between the respective control modes, where the Personalized Adaptive Stiffness controller excels in terms of both performance gain and user preference. Further analysis shows that human and task parameters can be combined and quantified by considering the manipulability of a simplified human arm model. The analysis of user’s interaction force profiles confirms this finding

    Engineering scalable modelling Languages

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura: 08-11-2019Esta tesis tiene embargado el acceso al texto completo hasta el 08-05-2021Model-Driven Engineering (MDE) aims at reducing the cost of system development by raising the level of abstraction at which developers work. MDE-based solutions frequently involve the creation of Domain-Specific Modelling Languages (DSMLs). WhilethedefinitionofDSMLsandtheir(sometimesgraphical)supportingenvironments are recurring activities in MDE, they are mostly developed ad-hoc from scratch. The construction of these environments requires high expertise by developers, which currently need to spend large efforts for their construction. This thesis focusses on the development of scalable modelling environments for DSMLs based on patterns. For this purpose, we propose a catalogue of modularity patterns that can be used to extend a modelling language with services related to modularization and scalability. More specifically, these patterns allows defining model fragmentation strategies, scoping and visibility rules, model indexing services, and scoped constraints. Once the patterns have been applied to the meta-model of a modelling language, we synthesize a customized modelling environment enriched with the defined services, which become applicable to both existing monolithic legacy models and new models. A second contribution of this thesis is a set of concepts and technologies to facilitate the creation of graphical editors. For this purpose, we define heuristics which identify structures in the DSML abstract syntax, and automatically assign their diagram representation. Using this approach, developers can create a graphical representation by default from a meta-model, which later can be customised. These contributions have been implemented in two Eclipse plug-ins called EMFSplitter and EMF-Stencil. On one hand, EMF-Splitter implements the catalogue of modularity patterns and, on the other hand, EMF-Stencil supports the heuristics and the generation of a graphical modelling environment. Both tools were evaluated in different case studies to prove their versatility, efficiency, and capabilitieEl Desarrollo de Software Dirigido por Modelos (MDE, por sus siglas en inglés) tiene como objetivo reducir los costes en el desarrollo de aplicaciones, elevando el nivel de abstracciónconelqueactualmentetrabajanlosdesarrolladores. Lassolucionesbasadas en MDE frecuentemente involucran la creación de Lenguajes de Modelado de Dominio Específico (DSML, por sus siglas en inglés). Aunque la definición de los DSMLs y sus entornos gráficos de modelado son actividades recurrentes en MDE, actualmente en la mayoría de los casos se desarrollan ad-hoc desde cero. La construcción de estos entornos requiere una alta experiencia por parte de los desarrolladores, que deben realizar un gran esfuerzo para construirlos. Esta tesis se centra en el desarrollo de entornos de modelado escalables para DSML basados en patrones. Para ello, se propone un catálogo de patrones de modularidad que se pueden utilizar para extender un lenguaje de modelado con servicios relacionados con la modularización y la escalabilidad. Específicamente, los patrones permiten definir estrategias de fragmentación de modelos, reglas de alcance y visibilidad, servicios de indexación de modelos y restricciones de alcance. Una vez que los patrones se han aplicado al meta-modelo de un lenguaje de modelado, se puede generar automáticamente un entorno de modelado personalizado enriquecido con los servicios definidos, que se vuelven aplicables tanto a los modelos monolíticos existentes, como a los nuevos modelos. Una segunda contribución de esta tesis es la propuesta de conceptos y tecnologías para facilitar la creación de editores gráficos. Para ello, definimos heurísticas que identifican estructuras en la sintaxis abstracta de los DSMLs y asignan automáticamente su representación en el diagrama. Usando este enfoque, los desarrolladores pueden crear una representación gráfica por defecto a partir de un meta-modelo. Estas contribuciones se implementaron en dos plug-ins de Eclipse llamados EMFSplitter y EMF-Stencil. Por un lado, EMF-Splitter implementa el catálogo de patrones y, por otro lado, EMF-Stencil implementa las heurísticas y la generación de un entorno de modelado gráfico. Ambas herramientas se han evaluado con diferentes casos de estudio para demostrar su versatilidad, eficiencia y capacidade

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first
    corecore