32 research outputs found

    Securing Distributed Systems: A Survey on Access Control Techniques for Cloud, Blockchain, IoT and SDN

    Get PDF
    Access Control is a crucial defense mechanism organizations can deploy to meet modern cybersecurity needs and legal compliance with data privacy. The aim is to prevent unauthorized users and systems from accessing protected resources in a way that exceeds their permissions. The present survey aims to summarize state-of-the-art Access Control techniques, presenting recent research trends in this area. Moreover, as the cyber-attack landscape and zero-trust networking challenges require organizations to consider their Information Security management strategies carefully, in this study, we present a review of contemporary Access Control techniques and technologies being discussed in the literature and the various innovations and evolution of the technology. We also discuss adopting and applying different Access Control techniques and technologies in four upcoming and crucial domains: Cloud Computing, Blockchain, the Internet of Things, and Software-Defined Networking. Finally, we discuss the business adoption strategies for Access Control and how the technology can be integrated into a cybersecurity and network architecture strategy

    From Conventional to State-of-the-Art IoT Access Control Models

    Get PDF
    open access articleThe advent in Online Social Networks (OSN) and Internet of Things (IoT) has created a new world of collaboration and communication between people and devices. The domain of internet of things uses billions of devices (ranging from tiny sensors to macro scale devices) that continuously produce and exchange huge amounts of data with people and applications. Similarly, more than a billion people are connected through social networking sites to collaborate and share their knowledge. The applications of IoT such as smart health, smart city, social networking, video surveillance and vehicular communication are quickly evolving people’s daily lives. These applications provide accurate, information-rich and personalized services to the users. However, providing personalized information comes at the cost of accessing private information of users such as their location, social relationship details, health information and daily activities. When the information is accessible online, there is always a chance that it can be used maliciously by unauthorized entities. Therefore, an effective access control mechanism must be employed to ensure the security and privacy of entities using OSN and IoT services. Access control refers to a process which can restrict user’s access to data and resources. It enforces access rules to grant authorized users an access to resources and prevent others. This survey examines the increasing literature on access control for traditional models in general, and for OSN and IoT in specific. Challenges and problems related to access control mechanisms are explored to facilitate the adoption of access control solutions in OSN and IoT scenarios. The survey provides a review of the requirements for access control enforcement, discusses several security issues in access control, and elaborates underlying principles and limitations of famous access control models. We evaluate the feasibility of current access control models for OSN and IoT and provide the future development direction of access control for the sam

    Temporal and Resource Controllability of Workflows Under Uncertainty

    Get PDF
    Workflow technology has long been employed for the modeling, validation and execution of business processes. A workflow is a formal description of a business process in which single atomic work units (tasks), organized in a partial order, are assigned to processing entities (agents) in order to achieve some business goal(s). Workflows can also employ workflow paths (projections with respect to a total truth value assignment to the Boolean variables associated to the conditional split connectors) in order (not) to execute a subset of tasks. A workflow management system coordinates the execution of tasks that are part of workflow instances such that all relevant constraints are eventually satisfied. Temporal workflows specify business processes subject to temporal constraints such as controllable or uncontrollable durations, delays and deadlines. The choice of a workflow path may be controllable or not, considered either in isolation or in combination with uncontrollable durations. Access controlled workflows specify workflows in which users are authorized for task executions and authorization constraints say which users remain authorized to execute which tasks depending on who did what. Access controlled workflows may consider workflow paths too other than the uncertain availability of resources (users, throughout this thesis). When either a task duration or the choice of the workflow path to take or the availability of a user is out of control, we need to verify that the workflow can be executed by verifying all constraints for any possible combination of behaviors arising from the uncontrollable parts. Indeed, users might be absent before starting the execution (static resiliency), they can also become so during execution (decremental resiliency) or they can come and go throughout the execution (dynamic resiliency). Temporal access controlled workflows merge the two previous formalisms by considering several kinds of uncontrollable parts simultaneously. Authorization constraints may be extended to support conditional and temporal features. A few years ago some proposals addressed the temporal controllability of workflows by encoding them into temporal networks to exploit "off-the-shelf" controllability checking algorithms available for them. However, those proposals fail to address temporal controllability where the controllable and uncontrollable choices of workflow paths may mutually influence one another. Furthermore, to the best of my knowledge, controllability of access controlled workflows subject to uncontrollable workflow paths and algorithms to validate and execute dynamically resilient workflows remain unexplored. To overcome these limitations, this thesis goes for exact algorithms by addressing temporal and resource controllability of workflows under uncertainty. I provide several new classes of (temporal) constraint networks and corresponding algorithms to check their controllability. After that, I encode workflows into these new formalisms. I also provide an encoding into instantaneous timed games to model static, decremental and dynamic resiliency and synthesize memoryless execution strategies. I developed a few tools with which I carried out some initial experimental evaluations

    Analysis and Design of Privacy-Enhancing Information Sharing Systems

    Get PDF
    Recent technological advancements have enabled the collection of large amounts of personal data of individuals at an ever-increasing rate. Service providers, organisations and governments can collect or otherwise acquire rich information about individuals’ everyday lives and habits from big data-silos, enabling profiling and micro-targeting such as in political elections. Therefore, it is important to analyse systems that allow the collection and information sharing between users and to design secure and privacy enhancing solutions. This thesis contains two parts. The aim of the first part is to investigate in detail the effects of the collateral information collection of third-party applications on Facebook. The aim of the second part is to analyse in detail the security and privacy issues of car sharing systems and to design a secure and privacy-preserving solution. In the first part, we present a detailed multi-faceted study on the collateral information collection privacy issues of Facebook applications; providers of third-party applications on Facebook exploit the interdependency between users and their friends. The goal is to (i) study the existence of the problem, (ii) investigate whether Facebook users are concerned about the issue, quantify its (iii) likelihood and (iv) impact of collateral information collection affecting users, (v) identify whether collateral information collection is an issue for the protection of the personal data of Facebook users under the legal framework, and (vi) we propose solutions that aim to solve the problem of collateral information collection. In order to investigate the views of the users, we designed a questionnaire and collected the responses of participants. Employing real data from the Facebook third-party applications ecosystem, we compute the likelihood of collateral information collection affecting users and quantify its significance evaluating the amount of attributes collected by such applications. To investigate whether collateral information collection is an issue in terms of users’ privacy we analysed the legal framework in light of the General Data Protection Regulation. To provide countermeasures, we propose a privacy dashboard extension that implements privacy scoring computations to enhance transparency towards collateral information collection

    Reusable framework for web application development

    Get PDF
    Web application (WA) is among the mainstream enterprise-level software solutions. One of the reasons for this trend was due to the presence of Web application framework (WAF) that in many ways has helped web developer to implement WA as an enterprise system. However, there are complexity issues faced by the developers when using existing WAFs as reported by the developers themselves. This study is proposed to find a solution to this particular issue by investigating generic issues that arise when developers utilize Web as a platform to deliver enterprise-level application. The investigation involves the identification of problems and challenges imposed by the architecture and technology of the Web itself, study of software engineering (SE) knowledge adaptation for WA development, determination of factors that contribute to the complexity of WAF implementation, and study of existing solutions for WA development proposed by previous works. To better understand the real issues faced by the developers, handson experiment was conducted through development testing performed on selected WAFs. A new highly reusable WAF is proposed, which is derived from the experience of developing several WAs case studies guided by the theoretical and technical knowledge previously established in the study. The proposed WAF was quantitatively and statistically evaluated in terms of its reusability and usability to gain insight into the complexity of the development approach proposed by the WAF. Reuse analysis results demonstrated that the proposed WAF has exceeded the minimum target of 75% reuse at both the component and system levels while the usability study results showed that almost all (15 out of 16) of the questionnaire items used to measure users’ attitudes towards the WAF were rated at least moderately by the respondents

    A Trust-Based Adaptive Access Control Model for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) have recently attracted much interest in the research community because of their wide range of applications. One emerging application for WSNs involves their use in healthcare where they are generally termed Wireless Medical Sensor Networks (WMSNs). In a hospital, fitting patients with tiny, wearable, wireless vital sign sensors would allow doctors, nurses and others to continuously monitor the state of those in their care. In the healthcare industry, patients are expected to be treated in reasonable time and any loss in data availability can result in further decline in the patient’s condition or can even lead to death. Therefore, the availability of data is more important than security concerns. The overwhelming priority is to take care of the patient, but the privacy and confidentiality of that patient’s medical records cannot be neglected. In current healthcare applications, there are many problems concerning security policy violations such as unauthorised denial of use, unauthorised information modification and unauthorised information release of medical data in the real world environment. Current WSN access control models used the traditional Role-Based Access Control (RBAC) or cryptographic methods for data access control but the systems still need to predefine attributes, roles and policies before deployment. It is, however, difficult to determine in advance all the possible needs for access in real world applications because there may be unanticipated situations at any time. This research proceeds to study possible approaches to address the above issues and to develop a new access control model to fill the gaps in work done by the WSN research community. Firstly, the adaptive access control model is proposed and developed based on the concept of discretionary overriding to address the data availability issue. In the healthcare industry, there are many problems concerning unauthorised information release. So, we extended the adaptive access control model with a prevention and detection mechanism to detect security policy violations, and added the concept of obligation to take a course of action when a restricted access is granted or denied. However, this approach does not consider privacy of patients’ information because data availability is prioritised. To address the conflict between data availability and data privacy, this research proposed the Trust-based Adaptive Access Control (TBA2C) model that integrates the concept of trust into the previous model. A simple user behaviour trust model is developed to calculate the behaviour trust value which measures the trustworthiness of the users and that is used as one of the defined thresholds to override access policy for data availability purpose, but the framework of the TBA2C model can be adapted with other trust models in the research community. The trust model can also protect data privacy because only a user who satisfies the relevant trust threshold can get restricted access in emergency and unanticipated situations. Moreover, the introduction of trust values in the enforcement of authorisation decisions can detect abnormal data access even from authorised users. Ponder2 is used to develop the TBA2C model gradually, starting from a simple access control model to the full TBA2C. In Ponder2, a Self-Managed Cell (SMC) simulates a sensor node with the TBA2C engine inside it. Additionally, to enable a full comparison with the proposed TBA2C model, the Break-The-Glass Role Based Access Control (BTGRBAC) model is redesigned and developed in the same platform (Ponder2). The proposed TBA2C model is the first to realise a flexible access control engine and to address the conflict between data availability and data privacy by combining the concepts of discretionary overriding, the user behaviour trust model, and the prevention and detection mechanism

    Gestion de l'incertitude et codage des politiques de sécurité dans les systèmes de contrôle d'accès

    Get PDF
    La présente thèse s'intéresse à coder la politique de sécurité SELinux en OrBAC et à proposer une extension de ce modèle. Nous avons commencé par présenter l'état de l'art des différents modèles de contrôles d'accès présents dans la littérature en mettant en exergue les limites de chacun de ces modèles. Ensuite nous avons présenté le modèle OrBAC comme étant une extension du modèle RBAC, car d'une part il a apporté la notion de contexte et d'organisation et d'autre part il permet d'exprimer, en plus des permissions, des interdictions et des obligations. Ensuite, nous avons présenté la solution de sécurité SELinux qui utilise un ensemble de modèles de contrôle d'accès comme DAC, RBAC et MAC. Nous avons recensé plusieurs centaines, voire des milliers, de règles dans la politique de sécurité SELinux, ces règles peuvent concerner des décisions d'accès ou des décisions de transition. Nous avons ensuite pu coder lesdites règles en modèle OrBAC, et ce en passant par le remplissage ses tables d'entité, pour ensuite les transformer en relations OrBAC. Notre thèse a aussi rappelé les fondements de la logique possibiliste, et a ensuite apportée une amélioration importante du modèle OrBAC, il s'agit de l'introduction de l'entité priorité au niveau de chaque relation du modèle OrBAC. L'entité priorité quantifie la certitude pour qu'une entité concrète soit injectée dans l'entité abstraite correspondante, ou en cas général, le degré de certitude pour qu'une relation soit réalisée. Nous avons proposé trois modes de combinaison (pessimiste, optimiste et avancé) qui peuvent être adoptés pour déterminer la valeur de la priorité de chaque relation concrète à partir des priorités des relations abstraites correspondantes. Enfin, nous avons implémenté, via une application développé par DELPHI, le codage des règles concernant les décisions d'accès de la politique de sécurité SELinux, en modèle OrBAC tout en introduisant la notion de priorité.This thesis focuses on encoding default-based SELinux security policy in OrBAC and propose an extension of this model. We presented the state of the art of different models of access controls present in the literature underlining the limitations of each of these models. Then we presented the model OrBAC as an extension of the RBAC model, firstly because he brought the notion of context and organization and secondly it allows expressing, in addition to permissions, prohibitions and obligation. Then we presented the SELinux security solution that uses a set of access control models such as DAC, RBAC and MAC. We identified several hundreds or even thousands of rules in SELinux security policy, these rules may be access decisions or decisions of transition. We could then encode these rules in OrBAC model, and via filling its tables of entities, then transform relations OrBAC. Our thesis also reviewed the foundations of possibilistic logic, and then made an important enlargement in OrBAC model; it's to introduce an entity called "priority" in each relationship model OrBAC. The entity "priority" quantifies the certainty for concrete entity injection into the corresponding abstract entity, in general, it's meaning the degree of certainty that a relationship is performed. We proposed three modes of combination (pessimistic, optimistic and advanced) that can be adopted to determine the concrete relations priority value from priorities values of each corresponding abstract relationship. Finally, we implement, via an application developed by DELPHI, coding access decisions rules of the SELinux policy in OrBAC model introducing the priority entity.ARRAS-Bib.electronique (620419901) / SudocSudocFranceF
    corecore