266 research outputs found

    An Empirical Analysis of NMT-Derived Interlingual Embeddings and their Use in Parallel Sentence Identification

    Get PDF
    End-to-end neural machine translation has overtaken statistical machine translation in terms of translation quality for some language pairs, specially those with large amounts of parallel data. Besides this palpable improvement, neural networks provide several new properties. A single system can be trained to translate between many languages at almost no additional cost other than training time. Furthermore, internal representations learned by the network serve as a new semantic representation of words -or sentences- which, unlike standard word embeddings, are learned in an essentially bilingual or even multilingual context. In view of these properties, the contribution of the present work is two-fold. First, we systematically study the NMT context vectors, i.e. output of the encoder, and their power as an interlingua representation of a sentence. We assess their quality and effectiveness by measuring similarities across translations, as well as semantically related and semantically unrelated sentence pairs. Second, as extrinsic evaluation of the first point, we identify parallel sentences in comparable corpora, obtaining an F1=98.2% on data from a shared task when using only NMT context vectors. Using context vectors jointly with similarity measures F1 reaches 98.9%.Comment: 11 pages, 4 figure

    Joint Dropout: Improving Generalizability in Low-Resource Neural Machine Translation through Phrase Pair Variables

    Full text link
    Despite the tremendous success of Neural Machine Translation (NMT), its performance on low-resource language pairs still remains subpar, partly due to the limited ability to handle previously unseen inputs, i.e., generalization. In this paper, we propose a method called Joint Dropout, that addresses the challenge of low-resource neural machine translation by substituting phrases with variables, resulting in significant enhancement of compositionality, which is a key aspect of generalization. We observe a substantial improvement in translation quality for language pairs with minimal resources, as seen in BLEU and Direct Assessment scores. Furthermore, we conduct an error analysis, and find Joint Dropout to also enhance generalizability of low-resource NMT in terms of robustness and adaptability across different domainsComment: Accepted at MT Summit 202

    Region-Attentive Multimodal Neural Machine Translation

    Get PDF
    We propose a multimodal neural machine translation (MNMT) method with semantic image regions called region-attentive multimodal neural machine translation (RA-NMT). Existing studies on MNMT have mainly focused on employing global visual features or equally sized grid local visual features extracted by convolutional neural networks (CNNs) to improve translation performance. However, they neglect the effect of semantic information captured inside the visual features. This study utilizes semantic image regions extracted by object detection for MNMT and integrates visual and textual features using two modality-dependent attention mechanisms. The proposed method was implemented and verified on two neural architectures of neural machine translation (NMT): recurrent neural network (RNN) and self-attention network (SAN). Experimental results on different language pairs of Multi30k dataset show that our proposed method improves over baselines and outperforms most of the state-of-the-art MNMT methods. Further analysis demonstrates that the proposed method can achieve better translation performance because of its better visual feature use
    corecore