21 research outputs found

    Nonparametric Feature Extraction from Dendrograms

    Full text link
    We propose feature extraction from dendrograms in a nonparametric way. The Minimax distance measures correspond to building a dendrogram with single linkage criterion, with defining specific forms of a level function and a distance function over that. Therefore, we extend this method to arbitrary dendrograms. We develop a generalized framework wherein different distance measures can be inferred from different types of dendrograms, level functions and distance functions. Via an appropriate embedding, we compute a vector-based representation of the inferred distances, in order to enable many numerical machine learning algorithms to employ such distances. Then, to address the model selection problem, we study the aggregation of different dendrogram-based distances respectively in solution space and in representation space in the spirit of deep representations. In the first approach, for example for the clustering problem, we build a graph with positive and negative edge weights according to the consistency of the clustering labels of different objects among different solutions, in the context of ensemble methods. Then, we use an efficient variant of correlation clustering to produce the final clusters. In the second approach, we investigate the sequential combination of different distances and features sequentially in the spirit of multi-layered architectures to obtain the final features. Finally, we demonstrate the effectiveness of our approach via several numerical studies

    Learning Adversarial Low-rank Markov Decision Processes with Unknown Transition and Full-information Feedback

    Full text link
    In this work, we study the low-rank MDPs with adversarially changed losses in the full-information feedback setting. In particular, the unknown transition probability kernel admits a low-rank matrix decomposition \citep{REPUCB22}, and the loss functions may change adversarially but are revealed to the learner at the end of each episode. We propose a policy optimization-based algorithm POLO, and we prove that it attains the O~(K56A12dln(1+M)/(1γ)2)\widetilde{O}(K^{\frac{5}{6}}A^{\frac{1}{2}}d\ln(1+M)/(1-\gamma)^2) regret guarantee, where dd is rank of the transition kernel (and hence the dimension of the unknown representations), AA is the cardinality of the action space, MM is the cardinality of the model class, and γ\gamma is the discounted factor. Notably, our algorithm is oracle-efficient and has a regret guarantee with no dependence on the size of potentially arbitrarily large state space. Furthermore, we also prove an Ω(γ21γdAK)\Omega(\frac{\gamma^2}{1-\gamma} \sqrt{d A K}) regret lower bound for this problem, showing that low-rank MDPs are statistically more difficult to learn than linear MDPs in the regret minimization setting. To the best of our knowledge, we present the first algorithm that interleaves representation learning, exploration, and exploitation to achieve the sublinear regret guarantee for RL with nonlinear function approximation and adversarial losses

    Adversarial balancing-based representation learning for causal effect inference with observational data

    Get PDF
    Learning causal effects from observational data greatly benefits a variety of domains such as health care, education, and sociology. For instance, one could estimate the impact of a new drug on specific individuals to assist clinical planning and improve the survival rate. In this paper, we focus on studying the problem of estimating the Conditional Average Treatment Effect (CATE) from observational data. The challenges for this problem are two-fold: on the one hand, we have to derive a causal estimator to estimate the causal quantity from observational data, in the presence of confounding bias; on the other hand, we have to deal with the identification of the CATE when the distributions of covariates over the treatment group units and the control units are imbalanced. To overcome these challenges, we propose a neural network framework called Adversarial Balancing-based representation learning for Causal Effect Inference (ABCEI), based on recent advances in representation learning. To ensure the identification of the CATE, ABCEI uses adversarial learning to balance the distributions of covariates in the treatment and the control group in the latent representation space, without any assumptions on the form of the treatment selection/assignment function. In addition, during the representation learning and balancing process, highly predictive information from the original covariate space might be lost. ABCEI can tackle this information loss problem by preserving useful information for predicting causal effects under the regularization of a mutual information estimator. The experimental results show that ABCEI is robust against treatment selection bias, and matches/outperforms the state-of-the-art approaches. Our experiments show promising results on several datasets, encompassing several health care (and other) domains

    Backpropagation through Combinatorial Algorithms: Identity with Projection Works

    Full text link
    Embedding discrete solvers as differentiable layers has given modern deep learning architectures combinatorial expressivity and discrete reasoning capabilities. The derivative of these solvers is zero or undefined, therefore a meaningful replacement is crucial for effective gradient-based learning. Prior works rely on smoothing the solver with input perturbations, relaxing the solver to continuous problems, or interpolating the loss landscape with techniques that typically require additional solver calls, introduce extra hyper-parameters, or compromise performance. We propose a principled approach to exploit the geometry of the discrete solution space to treat the solver as a negative identity on the backward pass and further provide a theoretical justification. Our experiments demonstrate that such a straightforward hyper-parameter-free approach is able to compete with previous more complex methods on numerous experiments such as backpropagation through discrete samplers, deep graph matching, and image retrieval. Furthermore, we substitute the previously proposed problem-specific and label-dependent margin with a generic regularization procedure that prevents cost collapse and increases robustness.Comment: The first two authors contributed equall
    corecore