289 research outputs found

    Map Style Formalization: Rendering Techniques Extension for Cartography

    Get PDF
    International audienceCartographic design requires controllable methods and tools to produce maps that are adapted to users' needs and preferences. The formalized rules and constraints for cartographic representation come mainly from the conceptual framework of graphic semiology. Most current Geographical Information Systems (GIS) rely on the Styled Layer Descriptor and Semiology Encoding (SLD/SE) specifications which provide an XML schema describing the styling rules to be applied on geographic data to draw a map. Although this formalism is relevant for most usages in cartography, it fails to describe complex cartographic and artistic styles. In order to overcome these limitations, we propose an extension of the existing SLD/SE specifications to manage extended map stylizations, by the means of controllable expressive methods. Inspired by artistic and cartographic sources (Cassini maps, mountain maps, artistic movements, etc.), we propose to integrate into our system three main expressive methods: linear stylization, patch-based region filling and vector texture generation. We demonstrate how our pipeline allows to personalize map rendering with expressive methods in several examples

    Interactive toon shading using mesh smoothing

    Get PDF
    Toon shading mimics the style of few colour bands and hence offers an effective way to convey the cartoon-style rendering. Despite an increasing amount of research on toon shading, little research has been reported on generation of toon shading style with more simplicity. In this paper, we present a method to create a simplified form of toon shading using mesh smoothing from 3D objects. The proposed method exploits the Laplacian smoothing to emphasise the simplicity of 3D objects. Motivated by simplified form of Phong lighting model, we create non-photorealistic style capable of enhancing the cartoonish appearance. An enhanced toon shading algorithm is applied on the simple 3D objects in order to convey more simple visual cues of tone. The experimental result reveals the ability of proposed method to produce more cartoonish simplistic effects

    Towards Probe-Less Augmented Reality:a Position Paper

    Get PDF

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Automatic lighting design from photographic rules

    Get PDF
    International audienceLighting design is crucial in 3D scenes modeling for its ability to provide cues to understand the objects shape. However a lot of time, skills, trials and errors are required to obtain a desired result. Existing automatic lighting methods for conveying the shape of 3D objects are based either on costly optimizations or on non-realistic shading effects. Also they do not take the material information into account. In this paper, we propose a new method that automatically suggests a lighting setup to reveal the shape of a 3D model, taking into account its material and its geometric properties. Our method is independent from the rendering algorithm. It is based on lighting rules extracted from photography books, applied through a fast and simple geometric analysis. We illustrate our algorithm on objects having different shapes and materials, and we show by both visual and metric evaluation that it is comparable to optimization methods in terms of lighting setups quality. Thanks to its genericity our algorithm could be integrated in any rendering pipeline to suggest appropriate lighting

    Self adaptive animation based on user perspective

    Get PDF
    In this paper we present a new character animation technique in which the animation adapts itself based on the change in the user's perspective, so that when the user moves and their point of viewing the animation changes, then the character animation adapts itself in response to that change. The resulting animation, generated in real-time, is a blend of key animations provided a priori by the animator. The blending is done with the help of efficient dual-quaternion transformation blending. The user's point of view is tracked using either computer vision techniques or a simple user-controlled input modality, such as mouse-based input. This tracked point of view is then used to suitably select the blend of animations. We show a way to author and use such animations in both virtual as well as augmented reality scenarios and demonstrate that it significantly heightens the sense of presence for the users when they interact with such self adaptive animations of virtual character

    Performance Comparison of Techniques for Approximating Image-Based Lighting by Directional Light Sources

    Get PDF

    Spatial Motion Doodles: Sketching Animation in VR Using Hand Gestures and Laban Motion Analysis

    Get PDF
    International audienceWe present a method for easily drafting expressive character animation by playing with instrumented rigid objects. We parse the input 6D trajectories (position and orientation over time)-called spatial motion doodles-into sequences of actions and convert them into detailed character animations using a dataset of parameterized motion clips which are automatically fitted to the doodles in terms of global trajectory and timing. Moreover, we capture the expres-siveness of user-manipulation by analyzing Laban effort qualities in the input spatial motion doodles and transferring them to the synthetic motions we generate. We validate the ease of use of our system and the expressiveness of the resulting animations through a series of user studies, showing the interest of our approach for interactive digital storytelling applications dedicated to children and non-expert users, as well as for providing fast drafting tools for animators

    Real-Time View-Dependent Visualization of Real World Glossy Surfaces

    Get PDF
    • …
    corecore