57 research outputs found

    User-oriented recommender systems in retail

    Get PDF
    User satisfaction is considered a key objective for all service provider platforms, regardless of the nature of the service, encompassing domains such as media, entertainment, retail, and information. While the goal of satisfying users is the same across different domains and services, considering domain-specific characteristics is of paramount importance to ensure users have a positive experience with a given system. User interaction data with a system is one of the main sources of data that facilitates achieving this goal. In this thesis, we investigate how to learn from domain-specific user interactions. We focus on recommendation as our main task, and retail as our main domain. We further explore the finance domain and the demand forecasting task as additional directions to understand whether our methodology and findings generalize to other tasks and domains. The research in this thesis is organized around the following dimensions: 1) Characteristics of multi-channel retail: we consider a retail setting where interaction data comes from both digital (i.e., online) and in-store (i.e., offline) shopping; 2) From user behavior to recommendation: we conduct extensive descriptive studies on user interaction log datasets that inform the design of recommender systems in two domains, retail and finance. Our key contributions in characterizing multi-channel retail are two-fold. First, we propose a neural model that makes use of sales in multiple shopping channels in order to improve the performance of demand forecasting in a target channel. Second, we provide the first study of user behavior in a multi-channel retail setting, which results in insights about the channel-specific properties of user behavior, and their effects on the performance of recommender systems. We make three main contributions in designing user-oriented recommender systems. First, we provide a large-scale user behavior study in the finance domain, targeted at understanding financial information seeking behavior in user interactions with company filings. We then propose domain-specific user-oriented filing recommender systems that are informed by the findings of the user behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in the grocery shopping domain. We then propose a repeat consumption-aware neural recommender for this domain. Third, we focus on scalable recommendation in retail and propose an efficient recommender system that explicitly models users' personal preferences that are reflected in their purchasing history

    Collaborative Recommendation Model Based on Multi-modal Multi-view Attention Network: Movie and literature cases

    Full text link
    The existing collaborative recommendation models that use multi-modal information emphasize the representation of users' preferences but easily ignore the representation of users' dislikes. Nevertheless, modelling users' dislikes facilitates comprehensively characterizing user profiles. Thus, the representation of users' dislikes should be integrated into the user modelling when we construct a collaborative recommendation model. In this paper, we propose a novel Collaborative Recommendation Model based on Multi-modal multi-view Attention Network (CRMMAN), in which the users are represented from both preference and dislike views. Specifically, the users' historical interactions are divided into positive and negative interactions, used to model the user's preference and dislike views, respectively. Furthermore, the semantic and structural information extracted from the scene is employed to enrich the item representation. We validate CRMMAN by designing contrast experiments based on two benchmark MovieLens-1M and Book-Crossing datasets. Movielens-1m has about a million ratings, and Book-Crossing has about 300,000 ratings. Compared with the state-of-the-art knowledge-graph-based and multi-modal recommendation methods, the AUC, NDCG@5 and NDCG@10 are improved by 2.08%, 2.20% and 2.26% on average of two datasets. We also conduct controlled experiments to explore the effects of multi-modal information and multi-view mechanism. The experimental results show that both of them enhance the model's performance

    Towards Ethical AI: Mathematics Influences Human Behavior

    Get PDF
    Mathematics plays an important role in the linguistic structure of artificial in- telligence (AI). We describe the linguistic process as a unique structure present both in human cognition and in cognitive computing. The close relationship with both AI and human cognition is due to this unique structure, which paves the way for AI to interfere with the behavior of those who interact with it. We highlight the role of mathematicians in designing algorithms—the core of the AI linguistic process—and in defining steps and instructions for AI. Because al- gorithms, through AI, interfere with the thought of those who interact with AI by providing anticipated solutions that prevent users from making free choices, we investigate how we can apply ethical principles to guide interactions between users and intelligent systems in order to address this issue. We contend that by integrating ethical principles in the mathematical modeling of algorithms, we can avoid manipulation, inequality, and black boxes in the protection of individual rights. As such, ethical considerations are highly important for those working with algorithms, which highlights the humanistic side of mathematics

    Impression-Aware Recommender Systems

    Full text link
    Novel data sources bring new opportunities to improve the quality of recommender systems. Impressions are a novel data source containing past recommendations (shown items) and traditional interactions. Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research. The relevance and interest of impressions have increased over the years; hence, the need for a review of relevant work on this type of recommenders. We present a systematic literature review on recommender systems using impressions, focusing on three fundamental angles in research: recommenders, datasets, and evaluation methodologies. We provide three categorizations of papers describing recommenders using impressions, present each reviewed paper in detail, describe datasets with impressions, and analyze the existing evaluation methodologies. Lastly, we present open questions and future directions of interest, highlighting aspects missing in the literature that can be addressed in future works.Comment: 34 pages, 103 references, 6 tables, 2 figures, ACM UNDER REVIE

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-

    Workshop on Learning and Evaluating Recommendations with Impressions (LERI)

    Get PDF
    Recommender systems typically rely on past user interactions as the primary source of information for making predictions. However, although highly informative, past user interactions are strongly biased. Impressions, on the other hand, are a new source of information that indicate the items displayed on screen when the user interacted (or not) with them, and have the potential to impact the field of recommender systems in several ways. Early research on impressions was constrained by the limited availability of public datasets, but this is rapidly changing and, as a consequence, interest in impressions has increased. Impressions present new research questions and opportunities, but also bring new challenges. Several works propose to use impressions as part of recommender models in various ways and discuss their information content. Others explore their potential in off-policy-estimation and reinforcement learning. Overall, the interest of the community is growing, but efforts in this direction remain disconnected. Therefore, we believe that a workshop would be useful in bringing the community together

    Requirements engineering for explainable systems

    Get PDF
    Information systems are ubiquitous in modern life and are powered by evermore complex algorithms that are often difficult to understand. Moreover, since systems are part of almost every aspect of human life, the quality in interaction and communication between humans and machines has become increasingly important. Hence the importance of explainability as an essential element of human-machine communication; it has also become an important quality requirement for modern information systems. However, dealing with quality requirements has never been a trivial task. To develop quality systems, software professionals have to understand how to transform abstract quality goals into real-world information system solutions. Requirements engineering provides a structured approach that aids software professionals in better comprehending, evaluating, and operationalizing quality requirements. Explainability has recently regained prominence and been acknowledged and established as a quality requirement; however, there is currently no requirements engineering recommendations specifically focused on explainable systems. To fill this gap, this thesis investigated explainability as a quality requirement and how it relates to the information systems context, with an emphasis on requirements engineering. To this end, this thesis proposes two theories that delineate the role of explainability and establish guidelines for the requirements engineering process of explainable systems. These theories are modeled and shaped through five artifacts. These theories and artifacts should help software professionals 1) to communicate and achieve a shared understanding of the concept of explainability; 2) to comprehend how explainability affects system quality and what role it plays; 3) in translating abstract quality goals into design and evaluation strategies; and 4) to shape the software development process for the development of explainable systems. The theories and artifacts were built and evaluated through literature studies, workshops, interviews, and a case study. The findings show that the knowledge made available helps practitioners understand the idea of explainability better, facilitating the creation of explainable systems. These results suggest that the proposed theories and artifacts are plausible, practical, and serve as a strong starting point for further extensions and improvements in the search for high-quality explainable systems

    User-oriented recommender systems in retail

    Get PDF
    User satisfaction is considered a key objective for all service provider platforms, regardless of the nature of the service, encompassing domains such as media, entertainment, retail, and information. While the goal of satisfying users is the same across different domains and services, considering domain-specific characteristics is of paramount importance to ensure users have a positive experience with a given system. User interaction data with a system is one of the main sources of data that facilitates achieving this goal. In this thesis, we investigate how to learn from domain-specific user interactions. We focus on recommendation as our main task, and retail as our main domain. We further explore the finance domain and the demand forecasting task as additional directions to understand whether our methodology and findings generalize to other tasks and domains. The research in this thesis is organized around the following dimensions: 1) Characteristics of multi-channel retail: we consider a retail setting where interaction data comes from both digital (i.e., online) and in-store (i.e., offline) shopping; 2) From user behavior to recommendation: we conduct extensive descriptive studies on user interaction log datasets that inform the design of recommender systems in two domains, retail and finance. Our key contributions in characterizing multi-channel retail are two-fold. First, we propose a neural model that makes use of sales in multiple shopping channels in order to improve the performance of demand forecasting in a target channel. Second, we provide the first study of user behavior in a multi-channel retail setting, which results in insights about the channel-specific properties of user behavior, and their effects on the performance of recommender systems. We make three main contributions in designing user-oriented recommender systems. First, we provide a large-scale user behavior study in the finance domain, targeted at understanding financial information seeking behavior in user interactions with company filings. We then propose domain-specific user-oriented filing recommender systems that are informed by the findings of the user behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in the grocery shopping domain. We then propose a repeat consumption-aware neural recommender for this domain. Third, we focus on scalable recommendation in retail and propose an efficient recommender system that explicitly models users' personal preferences that are reflected in their purchasing history

    Artificial Intelligence for Online Review Platforms - Data Understanding, Enhanced Approaches and Explanations in Recommender Systems and Aspect-based Sentiment Analysis

    Get PDF
    The epoch-making and ever faster technological progress provokes disruptive changes and poses pivotal challenges for individuals and organizations. In particular, artificial intelligence (AI) is a disruptive technology that offers tremendous potential for many fields such as information systems and electronic commerce. Therefore, this dissertation contributes to AI for online review platforms aiming at enabling the future for consumers, businesses and platforms by unveiling the potential of AI. To achieve this goal, the dissertation investigates six major research questions embedded in the triad of data understanding of online consumer reviews, enhanced approaches and explanations in recommender systems and aspect-based sentiment analysis

    The Challenges of Big Data - Contributions in the Field of Data Quality and Artificial Intelligence Applications

    Get PDF
    The term "big data" has been characterized by challenges regarding data volume, velocity, variety and veracity. Solving these challenges requires research effort that fits the needs of big data. Therefore, this cumulative dissertation contains five paper aiming at developing and applying AI approaches within the field of big data as well as managing data quality in big data
    corecore