20 research outputs found

    The Science of Citizen Science

    Get PDF

    Finding What You Need: A Guide to Citizen Science Guidelines

    Get PDF
    In line with the growth in citizen science projects and participants, there are an increasing number of guidelines on different aspects of citizen science (e.g. specific concepts and methodologies; data management; and project implementation) pitched at different levels of experience and expertise. However, it is not always easy for practitioners to know which is the most suitable guideline for their needs. This chapter presents a general classification of guidelines, illustrating and analysing examples of each type. Drawing on the EU-Citizen.Science project, we outline criteria for categorising guidelines to enable users to find the right one and to ensure that guidelines reach their intended audience. We discuss challenges and weaknesses around the use and creation of guidelines and, as a practical conclusion, provide a set of recommendations to consider when creating guidelines

    Data Quality in Citizen Science

    Get PDF
    This chapter discusses the broad and complex topic of data quality in citizen science – a contested arena because different projects and stakeholders aspire to different levels of data accuracy. In this chapter, we consider how we ensure the validity and reliability of data generated by citizen scientists and citizen science projects. We show that this is an essential methodological question that has emerged within a highly contested field in recent years. Data quality means different things to different stakeholders. This is no surprise as quality is always a broad spectrum, and nearly 200 terms are in use to describe it, regardless of the approach. We seek to deliver a high-level overview of the main themes and issues in data quality in citizen science, mechanisms to ensure and improve quality, and some conclusions on best practice and ways forwards. We encourage citizen science projects to share insights on their data practice failures. Finally, we show how data quality assurance gives credibility, reputation, and sustainability to citizen science projects

    The Paradox of Openness

    Get PDF
    Openness implies bottom-up empowerment and top-down transparency. The Paradox of Openness analyses the tensions encountered when openness is applied to the quest for democracy and markets, freedom and truth, compliance and transparency, and consensus and dissent in progressive Nordic societies.; Readership: All interested in the history and contemporary practices of openness and transparency, and anyone concerned with the Nordic experience of combining the call for openness with consensual political cultures

    The Paradox of Openness

    Get PDF
    Openness implies bottom-up empowerment and top-down transparency. The Paradox of Openness analyses the tensions encountered when openness is applied to the quest for democracy and markets, freedom and truth, compliance and transparency, and consensus and dissent in progressive Nordic societies.; Readership: All interested in the history and contemporary practices of openness and transparency, and anyone concerned with the Nordic experience of combining the call for openness with consensual political cultures

    Challenges for engineering students working with authentic complex problems

    Get PDF
    Engineers are important participants in solving societal, environmental and technical problems. However, due to an increasing complexity in relation to these problems new interdisciplinary competences are needed in engineering. Instead of students working with monodisciplinary problems, a situation where students work with authentic complex problems in interdisciplinary teams together with a company may scaffold development of new competences. The question is: What are the challenges for students structuring the work on authentic interdisciplinary problems? This study explores a three-day event where 7 students from Aalborg University (AAU) from four different faculties and one student from University College North Denmark (UCN), (6th-10th semester), worked in two groups at a large Danish company, solving authentic complex problems. The event was structured as a Hackathon where the students for three days worked with problem identification, problem analysis and finalizing with a pitch competition presenting their findings. During the event the students had workshops to support the work and they had the opportunity to use employees from the company as facilitators. It was an extracurricular activity during the summer holiday season. The methodology used for data collection was qualitative both in terms of observations and participants’ reflection reports. The students were observed during the whole event. Findings from this part of a larger study indicated, that students experience inability to transfer and transform project competences from their previous disciplinary experiences to an interdisciplinary setting

    Exploring the practical use of a collaborative robot for academic purposes

    Get PDF
    This article presents a set of experiences related to the setup and exploration of potential educational uses of a collaborative robot (cobot). The basic principles that have guided the work carried out have been three. First and foremost, study of all the functionalities offered by the robot and exploration of its potential academic uses both in subjects focused on industrial robotics and in subjects of related disciplines (automation, communications, computer vision). Second, achieve the total integration of the cobot at the laboratory, seeking not only independent uses of it but also seeking for applications (laboratory practices) in which the cobot interacts with some of the other devices already existing at the laboratory (other industrial robots and a flexible manufacturing system). Third, reuse of some available components and minimization of the number and associated cost of required new components. The experiences, carried out following a project-based learning methodology under the framework of bachelor and master subjects and thesis, have focused on the integration of mechanical, electronic and programming aspects in new design solutions (end effector, cooperative workspace, artificial vision system integration) and case studies (advanced task programming, cybersecure communication, remote access). These experiences have consolidated the students' acquisition of skills in the transition to professional life by having the close collaboration of the university faculty with the experts of the robotics company.Postprint (published version
    corecore