445 research outputs found

    Racial categories in machine learning

    Full text link
    Controversies around race and machine learning have sparked debate among computer scientists over how to design machine learning systems that guarantee fairness. These debates rarely engage with how racial identity is embedded in our social experience, making for sociological and psychological complexity. This complexity challenges the paradigm of considering fairness to be a formal property of supervised learning with respect to protected personal attributes. Racial identity is not simply a personal subjective quality. For people labeled "Black" it is an ascribed political category that has consequences for social differentiation embedded in systemic patterns of social inequality achieved through both social and spatial segregation. In the United States, racial classification can best be understood as a system of inherently unequal status categories that places whites as the most privileged category while signifying the Negro/black category as stigmatized. Social stigma is reinforced through the unequal distribution of societal rewards and goods along racial lines that is reinforced by state, corporate, and civic institutions and practices. This creates a dilemma for society and designers: be blind to racial group disparities and thereby reify racialized social inequality by no longer measuring systemic inequality, or be conscious of racial categories in a way that itself reifies race. We propose a third option. By preceding group fairness interventions with unsupervised learning to dynamically detect patterns of segregation, machine learning systems can mitigate the root cause of social disparities, social segregation and stratification, without further anchoring status categories of disadvantage

    50 Years of Test (Un)fairness: Lessons for Machine Learning

    Full text link
    Quantitative definitions of what is unfair and what is fair have been introduced in multiple disciplines for well over 50 years, including in education, hiring, and machine learning. We trace how the notion of fairness has been defined within the testing communities of education and hiring over the past half century, exploring the cultural and social context in which different fairness definitions have emerged. In some cases, earlier definitions of fairness are similar or identical to definitions of fairness in current machine learning research, and foreshadow current formal work. In other cases, insights into what fairness means and how to measure it have largely gone overlooked. We compare past and current notions of fairness along several dimensions, including the fairness criteria, the focus of the criteria (e.g., a test, a model, or its use), the relationship of fairness to individuals, groups, and subgroups, and the mathematical method for measuring fairness (e.g., classification, regression). This work points the way towards future research and measurement of (un)fairness that builds from our modern understanding of fairness while incorporating insights from the past.Comment: FAT* '19: Conference on Fairness, Accountability, and Transparency (FAT* '19), January 29--31, 2019, Atlanta, GA, US
    • …
    corecore