175 research outputs found

    DEFORM'06 - Proceedings of the Workshop on Image Registration in Deformable Environments

    Get PDF
    Preface These are the proceedings of DEFORM'06, the Workshop on Image Registration in Deformable Environments, associated to BMVC'06, the 17th British Machine Vision Conference, held in Edinburgh, UK, in September 2006. The goal of DEFORM'06 was to bring together people from different domains having interests in deformable image registration. In response to our Call for Papers, we received 17 submissions and selected 8 for oral presentation at the workshop. In addition to the regular papers, Andrew Fitzgibbon from Microsoft Research Cambridge gave an invited talk at the workshop. The conference website including online proceedings remains open, see http://comsee.univ-bpclermont.fr/events/DEFORM06. We would like to thank the BMVC'06 co-chairs, Mike Chantler, Manuel Trucco and especially Bob Fisher for is great help in the local arrangements, Andrew Fitzgibbon, and the Programme Committee members who provided insightful reviews of the submitted papers. Special thanks go to Marc Richetin, head of the CNRS Research Federation TIMS, which sponsored the workshop. August 2006 Adrien Bartoli Nassir Navab Vincent Lepeti

    SLAMBench 3.0:Systematic Automated Reproducible Evaluation of SLAM Systems for Robot Vision Challenges and Scene Understanding

    Get PDF
    As the SLAM research area matures and the number of SLAM systems available increases, the need for frameworks that can objectively evaluate them against prior work grows. This new version of SLAMBench moves beyond traditional visual SLAM, and provides new support for scene understanding and non-rigid environments (dynamic SLAM). More concretely for dynamic SLAM, SLAMBench 3.0 includes the first publicly available implementation of DynamicFusion, along with an evaluation infrastructure. In addition, we include two SLAM systems (one dense, one sparse) augmented with convolutional neural networks for scene understanding, together with datasets and appropriate metrics. Through a series of use-cases, we demonstrate the newly incorporated algorithms, visulation aids and metrics (6 new metrics, 4 new datasets and 5 new algorithms)

    Widening Viewing Angles of Automultiscopic Displays using Refractive Inserts

    Get PDF

    Detection of Abnormal Fish Trajectories Using a Clustering Based Hierarchical Classifier

    Get PDF
    We address the analysis of fish trajectories in unconstrained underwater videos to help marine biologist to detect new/rare fish behaviours and to detect environmental changes which can be observed from the abnormal behaviour of fish. The fish trajectories are separated into normal and abnormal classes which indicate the common behaviour of fish and the behaviours that are rare / unusual respectively. The proposed solution is based on a novel type of hierarchical classifier which builds the tree using clustered and labelled data based on similarity of data while using different feature sets at different levels of hierarchy. The paper presents a new method for fish trajectory analysis which has better performance compared to state-of-the-art techniques while the results are significant considering the challenges of underwater environments, low video quality, erratic movement of fish and highly imbalanced trajectory data that we used. Moreover, the proposed method is also powerful enough to classify highly imbalanced real-world datasets.

    A Survey on Human-aware Robot Navigation

    Full text link
    Intelligent systems are increasingly part of our everyday lives and have been integrated seamlessly to the point where it is difficult to imagine a world without them. Physical manifestations of those systems on the other hand, in the form of embodied agents or robots, have so far been used only for specific applications and are often limited to functional roles (e.g. in the industry, entertainment and military fields). Given the current growth and innovation in the research communities concerned with the topics of robot navigation, human-robot-interaction and human activity recognition, it seems like this might soon change. Robots are increasingly easy to obtain and use and the acceptance of them in general is growing. However, the design of a socially compliant robot that can function as a companion needs to take various areas of research into account. This paper is concerned with the navigation aspect of a socially-compliant robot and provides a survey of existing solutions for the relevant areas of research as well as an outlook on possible future directions.Comment: Robotics and Autonomous Systems, 202
    corecore