243 research outputs found

    Semantic Model Alignment for Business Process Integration

    Get PDF
    Business process models describe an enterprise’s way of conducting business and in this form the basis for shaping the organization and engineering the appropriate supporting or even enabling IT. Thereby, a major task in working with models is their analysis and comparison for the purpose of aligning them. As models can differ semantically not only concerning the modeling languages used, but even more so in the way in which the natural language for labeling the model elements has been applied, the correct identification of the intended meaning of a legacy model is a non-trivial task that thus far has only been solved by humans. In particular at the time of reorganizations, the set-up of B2B-collaborations or mergers and acquisitions the semantic analysis of models of different origin that need to be consolidated is a manual effort that is not only tedious and error-prone but also time consuming and costly and often even repetitive. For facilitating automation of this task by means of IT, in this thesis the new method of Semantic Model Alignment is presented. Its application enables to extract and formalize the semantics of models for relating them based on the modeling language used and determining similarities based on the natural language used in model element labels. The resulting alignment supports model-based semantic business process integration. The research conducted is based on a design-science oriented approach and the method developed has been created together with all its enabling artifacts. These results have been published as the research progressed and are presented here in this thesis based on a selection of peer reviewed publications comprehensively describing the various aspects

    ERP implementation methodologies and frameworks: a literature review

    Get PDF
    Enterprise Resource Planning (ERP) implementation is a complex and vibrant process, one that involves a combination of technological and organizational interactions. Often an ERP implementation project is the single largest IT project that an organization has ever launched and requires a mutual fit of system and organization. Also the concept of an ERP implementation supporting business processes across many different departments is not a generic, rigid and uniform concept and depends on variety of factors. As a result, the issues addressing the ERP implementation process have been one of the major concerns in industry. Therefore ERP implementation receives attention from practitioners and scholars and both, business as well as academic literature is abundant and not always very conclusive or coherent. However, research on ERP systems so far has been mainly focused on diffusion, use and impact issues. Less attention has been given to the methods used during the configuration and the implementation of ERP systems, even though they are commonly used in practice, they still remain largely unexplored and undocumented in Information Systems research. So, the academic relevance of this research is the contribution to the existing body of scientific knowledge. An annotated brief literature review is done in order to evaluate the current state of the existing academic literature. The purpose is to present a systematic overview of relevant ERP implementation methodologies and frameworks as a desire for achieving a better taxonomy of ERP implementation methodologies. This paper is useful to researchers who are interested in ERP implementation methodologies and frameworks. Results will serve as an input for a classification of the existing ERP implementation methodologies and frameworks. Also, this paper aims also at the professional ERP community involved in the process of ERP implementation by promoting a better understanding of ERP implementation methodologies and frameworks, its variety and history

    Investigating business process elements: a journey from the field of Business Process Management to ontological analysis, and back

    Get PDF
    Business process modelling languages (BPMLs) typically enable the representation of business processes via the creation of process models, which are constructed using the elements and graphical symbols of the BPML itself. Despite the wide literature on business process modelling languages, on the comparison between graphical components of different languages, on the development and enrichment of new and existing notations, and the numerous definitions of what a business process is, the BPM community still lacks a robust (ontological) characterisation of the elements involved in business process models and, even more importantly, of the very notion of business process. While some efforts have been done towards this direction, the majority of works in this area focuses on the analysis of the behavioural (control flow) aspects of process models only, thus neglecting other central modelling elements, such as those denoting process participants (e.g., data objects, actors), relationships among activities, goals, values, and so on. The overall purpose of this PhD thesis is to provide a systematic study of the elements that constitute a business process, based on ontological analysis, and to apply these results back to the Business Process Management field. The major contributions that were achieved in pursuing our overall purpose are: (i) a first comprehensive and systematic investigation of what constitutes a business process meta-model in literature, and a definition of what we call a literature-based business process meta-model starting from the different business process meta-models proposed in the literature; (ii) the ontological analysis of four business process elements (event, participant, relationship among activities, and goal), which were identified as missing or problematic in the literature and in the literature-based meta-model; (iii) the revision of the literature-based business process meta-model that incorporates the analysis of the four investigated business process elements - event, participant, relationship among activities and goal; and (iv) the definition and evaluation of a notation that enriches the relationships between activities by including the notions of occurrence dependences and rationales

    Linguistic Refactoring of Business Process Models

    Get PDF
    In the past decades, organizations had to face numerous challenges due to intensifying globalization and internationalization, shorter innovation cycles and growing IT support for business. Business process management is seen as a comprehensive approach to align business strategy, organization, controlling, and business activities to react flexibly to market changes. For this purpose, business process models are increasingly utilized to document and redesign relevant parts of the organization's business operations. Since companies tend to have a growing number of business process models stored in a process model repository, analysis techniques are required that assess the quality of these process models in an automatic fashion. While available techniques can easily check the formal content of a process model, there are only a few techniques available that analyze the natural language content of a process model. Therefore, techniques are required that address linguistic issues caused by the actual use of natural language. In order to close this gap, this doctoral thesis explicitly targets inconsistencies caused by natural language and investigates the potential of automatically detecting and resolving them under a linguistic perspective. In particular, this doctoral thesis provides the following contributions. First, it defines a classification framework that structures existing work on process model analysis and refactoring. Second, it introduces the notion of atomicity, which implements a strict consistency condition between the formal content and the textual content of a process model. Based on an explorative investigation, we reveal several reoccurring violation patterns are not compliant with the notion of atomicity. Third, this thesis proposes an automatic refactoring technique that formalizes the identified patterns to transform a non-atomic process models into an atomic one. Fourth, this thesis defines an automatic technique for detecting and refactoring synonyms and homonyms in process models, which is eventually useful to unify the terminology used in an organization. Fifth and finally, this thesis proposes a recommendation-based refactoring approach that addresses process models suffering from incompleteness and leading to several possible interpretations. The efficiency and usefulness of the proposed techniques is further evaluated by real-world process model repositories from various industries. (author's abstract

    Improving data preparation for the application of process mining

    Get PDF
    Immersed in what is already known as the fourth industrial revolution, automation and data exchange are taking on a particularly relevant role in complex environments, such as industrial manufacturing environments or logistics. This digitisation and transition to the Industry 4.0 paradigm is causing experts to start analysing business processes from other perspectives. Consequently, where management and business intelligence used to dominate, process mining appears as a link, trying to build a bridge between both disciplines to unite and improve them. This new perspective on process analysis helps to improve strategic decision making and competitive capabilities. Process mining brings together data and process perspectives in a single discipline that covers the entire spectrum of process management. Through process mining, and based on observations of their actual operations, organisations can understand the state of their operations, detect deviations, and improve their performance based on what they observe. In this way, process mining is an ally, occupying a large part of current academic and industrial research. However, although this discipline is receiving more and more attention, it presents severe application problems when it is implemented in real environments. The variety of input data in terms of form, content, semantics, and levels of abstraction makes the execution of process mining tasks in industry an iterative, tedious, and manual process, requiring multidisciplinary experts with extensive knowledge of the domain, process management, and data processing. Currently, although there are numerous academic proposals, there are no industrial solutions capable of automating these tasks. For this reason, in this thesis by compendium we address the problem of improving business processes in complex environments thanks to the study of the state-of-the-art and a set of proposals that improve relevant aspects in the life cycle of processes, from the creation of logs, log preparation, process quality assessment, and improvement of business processes. Firstly, for this thesis, a systematic study of the literature was carried out in order to gain an in-depth knowledge of the state-of-the-art in this field, as well as the different challenges faced by this discipline. This in-depth analysis has allowed us to detect a number of challenges that have not been addressed or received insufficient attention, of which three have been selected and presented as the objectives of this thesis. The first challenge is related to the assessment of the quality of input data, known as event logs, since the requeriment of the application of techniques for improving the event log must be based on the level of quality of the initial data, which is why this thesis presents a methodology and a set of metrics that support the expert in selecting which technique to apply to the data according to the quality estimation at each moment, another challenge obtained as a result of our analysis of the literature. Likewise, the use of a set of metrics to evaluate the quality of the resulting process models is also proposed, with the aim of assessing whether improvement in the quality of the input data has a direct impact on the final results. The second challenge identified is the need to improve the input data used in the analysis of business processes. As in any data-driven discipline, the quality of the results strongly depends on the quality of the input data, so the second challenge to be addressed is the improvement of the preparation of event logs. The contribution in this area is the application of natural language processing techniques to relabel activities from textual descriptions of process activities, as well as the application of clustering techniques to help simplify the results, generating more understandable models from a human point of view. Finally, the third challenge detected is related to the process optimisation, so we contribute with an approach for the optimisation of resources associated with business processes, which, through the inclusion of decision-making in the creation of flexible processes, enables significant cost reductions. Furthermore, all the proposals made in this thesis are validated and designed in collaboration with experts from different fields of industry and have been evaluated through real case studies in public and private projects in collaboration with the aeronautical industry and the logistics sector
    corecore