3,832 research outputs found

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    FastDeepIoT: Towards Understanding and Optimizing Neural Network Execution Time on Mobile and Embedded Devices

    Full text link
    Deep neural networks show great potential as solutions to many sensing application problems, but their excessive resource demand slows down execution time, pausing a serious impediment to deployment on low-end devices. To address this challenge, recent literature focused on compressing neural network size to improve performance. We show that changing neural network size does not proportionally affect performance attributes of interest, such as execution time. Rather, extreme run-time nonlinearities exist over the network configuration space. Hence, we propose a novel framework, called FastDeepIoT, that uncovers the non-linear relation between neural network structure and execution time, then exploits that understanding to find network configurations that significantly improve the trade-off between execution time and accuracy on mobile and embedded devices. FastDeepIoT makes two key contributions. First, FastDeepIoT automatically learns an accurate and highly interpretable execution time model for deep neural networks on the target device. This is done without prior knowledge of either the hardware specifications or the detailed implementation of the used deep learning library. Second, FastDeepIoT informs a compression algorithm how to minimize execution time on the profiled device without impacting accuracy. We evaluate FastDeepIoT using three different sensing-related tasks on two mobile devices: Nexus 5 and Galaxy Nexus. FastDeepIoT further reduces the neural network execution time by 48%48\% to 78%78\% and energy consumption by 37%37\% to 69%69\% compared with the state-of-the-art compression algorithms.Comment: Accepted by SenSys '1

    Modus Operandi of Crowd Workers : The Invisible Role of Microtask Work Environments

    Get PDF
    The ubiquity of the Internet and the widespread proliferation of electronic devices has resulted in flourishing microtask crowdsourcing marketplaces, such as Amazon MTurk. An aspect that has remained largely invisible in microtask crowdsourcing is that of work environments; defined as the hardware and software affordances at the disposal of crowd workers which are used to complete microtasks on crowdsourcing platforms. In this paper, we reveal the significant role of work environments in the shaping of crowd work. First, through a pilot study surveying the good and bad experiences workers had with UI elements in crowd work, we revealed the typical issues workers face. Based on these findings, we then deployed over 100 distinct microtasks on CrowdFlower, addressing workers in India and USA in two identical batches. These tasks emulate the good and bad UI element designs that characterize crowdsourcing microtasks. We recorded hardware specifics such as CPU speed and device type, apart from software specifics including the browsers used to complete tasks, operating systems on the device, and other properties that define the work environments of crowd workers. Our findings indicate that crowd workers are embedded in a variety of work environments which influence the quality of work produced. To confirm and validate our data-driven findings we then carried out semi-structured interviews with a sample of Indian and American crowd workers from this platform. Depending on the design of UI elements in microtasks, we found that some work environments are more suitable than others to support crowd workers. Based on our overall findings resulting from all the three studies, we introduce ModOp, a tool that helps to design crowdsourcing microtasks that are suitable for diverse crowd work environments. We empirically show that the use of ModOp results in reducing the cognitive load of workers, thereby improving their user experience without effecting the accuracy or task completion time

    Multi-task Self-Supervised Learning for Human Activity Detection

    Full text link
    Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas
    • …
    corecore