305 research outputs found

    Visibility rendering order: Improving energy efficiency on mobile GPUs through frame coherence

    Get PDF
    During real-time graphics rendering, objects are processed by the GPU in the order they are submitted by the CPU, and occluded surfaces are often processed even though they will end up not being part of the final image, thus wasting precious time and energy. To help discard occluded surfaces, most current GPUs include an Early-Depth test before the fragment processing stage. However, to be effective it requires that opaque objects are processed in a front-to-back order. Depth sorting and other occlusion culling techniques at the object level incur overheads that are only offset for applications having substantial depth and/or fragment shading complexity, which is often not the case in mobile workloads. We propose a novel architectural technique for mobile GPUs, Visibility Rendering Order (VRO), which reorders objects front-to-back entirely in hardware by exploiting the fact that the objects in graphics animated applications tend to keep its relative depth order across consecutive frames (temporal coherence). Since order relationships are already tested by the Depth Test, VRO incurs minimal energy overheads because it just requires adding a small hardware to capture that information and use it later to guide the rendering of the following frame. Moreover, unlike other approaches, this unit works in parallel with the graphics pipeline without any performance overhead. We illustrate the benefits of VRO using various unmodified commercial 3D applications for which VRO achieves 27% speed-up and 14.8% energy reduction on average over a state-of-the-art mobile GPU.Peer ReviewedPostprint (author's final draft

    Runtime-assisted optimizations in the on-chip memory hierarchy

    Get PDF
    Following Moore's Law, the number of transistors on chip has been increasing exponentially, which has led to the increasing complexity of modern processors. As a result, the efficient programming of such systems has become more difficult. Many programming models have been developed to answer this issue. Of particular interest are task-based programming models that employ simple annotations to define parallel work in an application. The information available at the level of the runtime systems associated with these programming models offers great potential for improving hardware design. Moreover, due to technological limitations, Moore's Law is predicted to eventually come to an end, so novel paradigms are necessary to maintain the current performance improvement trends. The main goal of this thesis is to exploit the knowledge about a parallel application available at the runtime system level to improve the design of the on-chip memory hierarchy. The coupling of the runtime system and the microprocessor enables a better hardware design without hurting the programmability. The first contribution is a set of insertion policies for shared last-level caches that exploit information about tasks and task data dependencies. The intuition behind this proposal revolves around the observation that parallel threads exhibit different memory access patterns. Even within the same thread, accesses to different variables often follow distinct patterns. The proposed policies insert cache lines into different logical positions depending on the dependency type and task type to which the corresponding memory request belongs. The second proposal optimizes the execution of reductions, defined as a programming pattern that combines input data to form the resulting reduction variable. This is achieved with a runtime-assisted technique for performing reductions in the processor's cache hierarchy. The proposal's goal is to be a universally applicable solution regardless of the reduction variable type, size and access pattern. On the software level, the programming model is extended to let a programmer specify the reduction variables for tasks, as well as the desired cache level where a certain reduction will be performed. The source-to-source compiler and the runtime system are extended to translate and forward this information to the underlying hardware. On the hardware level, private and shared caches are equipped with functional units and the accompanying logic to perform reductions at the cache level. This design avoids unnecessary data movements to the core and back as the data is operated at the place where it resides. The third contribution is a runtime-assisted prioritization scheme for memory requests inside the on-chip memory hierarchy. The proposal is based on the notion of a critical path in the context of parallel codes and a known fact that accelerating critical tasks reduces the execution time of the whole application. In the context of this work, task criticality is observed at a level of a task type as it enables simple annotation by the programmer. The acceleration of critical tasks is achieved by the prioritization of corresponding memory requests in the microprocessor.Siguiendo la ley de Moore, el número de transistores en los chips ha crecido exponencialmente, lo que ha comportado una mayor complejidad en los procesadores modernos y, como resultado, de la dificultad de la programación eficiente de estos sistemas. Se han desarrollado muchos modelos de programación para resolver este problema; un ejemplo particular son los modelos de programación basados en tareas, que emplean anotaciones sencillas para definir los Trabajos paralelos de una aplicación. La información de que disponen los sistemas en tiempo de ejecución (runtime systems) asociada con estos modelos de programación ofrece un enorme potencial para la mejora del diseño del hardware. Por otro lado, las limitaciones tecnológicas hacen que la ley de Moore pueda dejar de cumplirse próximamente, por lo que se necesitan paradigmas nuevos para mantener las tendencias actuales de mejora de rendimiento. El objetivo principal de esta tesis es aprovechar el conocimiento de las aplicaciones paral·leles de que dispone el runtime system para mejorar el diseño de la jerarquía de memoria del chip. El acoplamiento del runtime system junto con el microprocesador permite realizar mejores diseños hardware sin afectar Negativamente en la programabilidad de dichos sistemas. La primera contribución de esta tesis consiste en un conjunto de políticas de inserción para las memorias caché compartidas de último nivel que aprovecha la información de las tareas y las dependencias de datos entre estas. La intuición tras esta propuesta se basa en la observación de que los hilos de ejecución paralelos muestran distintos patrones de acceso a memoria e, incluso dentro del mismo hilo, los accesos a diferentes variables a menudo siguen patrones distintos. Las políticas que se proponen insertan líneas de caché en posiciones lógicas diferentes en función de los tipos de dependencia y tarea a los que corresponde la petición de memoria. La segunda propuesta optimiza la ejecución de las reducciones, que se definen como un patrón de programación que combina datos de entrada para conseguir la variable de reducción como resultado. Esto se consigue mediante una técnica asistida por el runtime system para la realización de reducciones en la jerarquía de la caché del procesador, con el objetivo de ser una solución aplicable de forma universal sin depender del tipo de la variable de la reducción, su tamaño o el patrón de acceso. A nivel de software, el modelo de programación se extiende para que el programador especifique las variables de reducción de las tareas, así como el nivel de caché escogido para que se realice una determinada reducción. El compilador fuente a Fuente (compilador source-to-source) y el runtime ssytem se modifican para que traduzcan y pasen esta información al hardware subyacente, evitando así movimientos de datos innecesarios hacia y desde el núcleo del procesador, al realizarse la operación donde se encuentran los datos de la misma. La tercera contribución proporciona un esquema de priorización asistido por el runtime system para peticiones de memoria dentro de la jerarquía de memoria del chip. La propuesta se basa en la noción de camino crítico en el contexto de los códigos paralelos y en el hecho conocido de que acelerar tareas críticas reduce el tiempo de ejecución de la aplicación completa. En el contexto de este trabajo, la criticidad de las tareas se considera a nivel del tipo de tarea ya que permite que el programador las indique mediante anotaciones sencillas. La aceleración de las tareas críticas se consigue priorizando las correspondientes peticiones de memoria en el microprocesador.Seguint la llei de Moore, el nombre de transistors que contenen els xips ha patit un creixement exponencial, fet que ha provocat un augment de la complexitat dels processadors moderns i, per tant, de la dificultat de la programació eficient d’aquests sistemes. Per intentar solucionar-ho, s’han desenvolupat diversos models de programació; un exemple particular en són els models basats en tasques, que fan servir anotacions senzilles per definir treballs paral·lels dins d’una aplicació. La informació que hi ha al nivell dels sistemes en temps d’execució (runtime systems) associada amb aquests models de programació ofereix un gran potencial a l’hora de millorar el disseny del maquinari. D’altra banda, les limitacions tecnològiques fan que la llei de Moore pugui deixar de complir-se properament, per la qual cosa calen nous paradigmes per mantenir les tendències actuals en la millora de rendiment. L’objectiu principal d’aquesta tesi és aprofitar els coneixements que el runtime System té d’una aplicació paral·lela per millorar el disseny de la jerarquia de memòria dins el xip. L’acoblament del runtime system i el microprocessador permet millorar el disseny del maquinari sense malmetre la programabilitat d’aquests sistemes. La primera contribució d’aquesta tesi consisteix en un conjunt de polítiques d’inserció a les memòries cau (cache memories) compartides d’últim nivell que aprofita informació sobre tasques i les dependències de dades entre aquestes. La intuïció que hi ha al darrere d’aquesta proposta es basa en el fet que els fils d’execució paral·lels mostren diferents patrons d’accés a la memòria; fins i tot dins el mateix fil, els accessos a variables diferents sovint segueixen patrons diferents. Les polítiques que s’hi proposen insereixen línies de la memòria cau a diferents ubicacions lògiques en funció dels tipus de dependència i de tasca als quals correspon la petició de memòria. La segona proposta optimitza l’execució de les reduccions, que es defineixen com un patró de programació que combina dades d’entrada per aconseguir la variable de reducció com a resultat. Això s’aconsegueix mitjançant una tècnica assistida pel runtime system per dur a terme reduccions en la jerarquia de la memòria cau del processador, amb l’objectiu que la proposta sigui aplicable de manera universal, sense dependre del tipus de la variable a la qual es realitza la reducció, la seva mida o el patró d’accés. A nivell de programari, es realitza una extensió del model de programació per facilitar que el programador especifiqui les variables de les reduccions que usaran les tasques, així com el nivell de memòria cau desitjat on s’hauria de realitzar una certa reducció. El compilador font a font (compilador source-to-source) i el runtime system s’amplien per traduir i passar aquesta informació al maquinari subjacent. A nivell de maquinari, les memòries cau privades i compartides s’equipen amb unitats funcionals i la lògica corresponent per poder dur a terme les reduccions a la pròpia memòria cau, evitant així moviments de dades innecessaris entre el nucli del processador i la jerarquia de memòria. La tercera contribució proporciona un esquema de priorització assistit pel runtime System per peticions de memòria dins de la jerarquia de memòria del xip. La proposta es basa en la noció de camí crític en el context dels codis paral·lels i en el fet conegut que l’acceleració de les tasques que formen part del camí crític redueix el temps d’execució de l’aplicació sencera. En el context d’aquest treball, la criticitat de les tasques s’observa al nivell del seu tipus ja que permet que el programador les indiqui mitjançant anotacions senzilles. L’acceleració de les tasques crítiques s’aconsegueix prioritzant les corresponents peticions de memòria dins el microprocessador

    Parallel architectures and runtime systems co-design for task-based programming models

    Get PDF
    The increasing parallelism levels in modern computing systems has extolled the need for a holistic vision when designing multiprocessor architectures taking in account the needs of the programming models and applications. Nowadays, system design consists of several layers on top of each other from the architecture up to the application software. Although this design allows to do a separation of concerns where it is possible to independently change layers due to a well-known interface between them, it is hampering future systems design as the Law of Moore reaches to an end. Current performance improvements on computer architecture are driven by the shrinkage of the transistor channel width, allowing faster and more power efficient chips to be made. However, technology is reaching physical limitations were the transistor size will not be able to be reduced furthermore and requires a change of paradigm in systems design. This thesis proposes to break this layered design, and advocates for a system where the architecture and the programming model runtime system are able to exchange information towards a common goal, improve performance and reduce power consumption. By making the architecture aware of runtime information such as a Task Dependency Graph (TDG) in the case of dataflow task-based programming models, it is possible to improve power consumption by exploiting the critical path of the graph. Moreover, the architecture can provide hardware support to create such a graph in order to reduce the runtime overheads and making possible the execution of fine-grained tasks to increase the available parallelism. Finally, the current status of inter-node communication primitives can be exposed to the runtime system in order to perform a more efficient communication scheduling, and also creates new opportunities of computation and communication overlap that were not possible before. An evaluation of the proposals introduced in this thesis is provided and a methodology to simulate and characterize the application behavior is also presented.El aumento del paralelismo proporcionado por los sistemas de cómputo modernos ha provocado la necesidad de una visión holística en el diseño de arquitecturas multiprocesador que tome en cuenta las necesidades de los modelos de programación y las aplicaciones. Hoy en día el diseño de los computadores consiste en diferentes capas de abstracción con una interfaz bien definida entre ellas. Las limitaciones de esta aproximación junto con el fin de la ley de Moore limitan el potencial de los futuros computadores. La mayoría de las mejoras actuales en el diseño de los computadores provienen fundamentalmente de la reducción del tamaño del canal del transistor, lo cual permite chips más rápidos y con un consumo eficiente sin apenas cambios fundamentales en el diseño de la arquitectura. Sin embargo, la tecnología actual está alcanzando limitaciones físicas donde no será posible reducir el tamaño de los transistores motivando así un cambio de paradigma en la construcción de los computadores. Esta tesis propone romper este diseño en capas y abogar por un sistema donde la arquitectura y el sistema de tiempo de ejecución del modelo de programación sean capaces de intercambiar información para alcanzar una meta común: La mejora del rendimiento y la reducción del consumo energético. Haciendo que la arquitectura sea consciente de la información disponible en el modelo de programación, como puede ser el grafo de dependencias entre tareas en los modelos de programación dataflow, es posible reducir el consumo energético explotando el camino critico del grafo. Además, la arquitectura puede proveer de soporte hardware para crear este grafo con el objetivo de reducir el overhead de construir este grado cuando la granularidad de las tareas es demasiado fina. Finalmente, el estado de las comunicaciones entre nodos puede ser expuesto al sistema de tiempo de ejecución para realizar una mejor planificación de las comunicaciones y creando nuevas oportunidades de solapamiento entre cómputo y comunicación que no eran posibles anteriormente. Esta tesis aporta una evaluación de todas estas propuestas, así como una metodología para simular y caracterizar el comportamiento de las aplicacionesPostprint (published version

    Prediction based task scheduling in distributed computing

    Full text link

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    Resiliency in numerical algorithm design for extreme scale simulations

    Get PDF
    This work is based on the seminar titled ‘Resiliency in Numerical Algorithm Design for Extreme Scale Simulations’ held March 1–6, 2020, at Schloss Dagstuhl, that was attended by all the authors. Advanced supercomputing is characterized by very high computation speeds at the cost of involving an enormous amount of resources and costs. A typical large-scale computation running for 48 h on a system consuming 20 MW, as predicted for exascale systems, would consume a million kWh, corresponding to about 100k Euro in energy cost for executing 1023 floating-point operations. It is clearly unacceptable to lose the whole computation if any of the several million parallel processes fails during the execution. Moreover, if a single operation suffers from a bit-flip error, should the whole computation be declared invalid? What about the notion of reproducibility itself: should this core paradigm of science be revised and refined for results that are obtained by large-scale simulation? Naive versions of conventional resilience techniques will not scale to the exascale regime: with a main memory footprint of tens of Petabytes, synchronously writing checkpoint data all the way to background storage at frequent intervals will create intolerable overheads in runtime and energy consumption. Forecasts show that the mean time between failures could be lower than the time to recover from such a checkpoint, so that large calculations at scale might not make any progress if robust alternatives are not investigated. More advanced resilience techniques must be devised. The key may lie in exploiting both advanced system features as well as specific application knowledge. Research will face two essential questions: (1) what are the reliability requirements for a particular computation and (2) how do we best design the algorithms and software to meet these requirements? While the analysis of use cases can help understand the particular reliability requirements, the construction of remedies is currently wide open. One avenue would be to refine and improve on system- or application-level checkpointing and rollback strategies in the case an error is detected. Developers might use fault notification interfaces and flexible runtime systems to respond to node failures in an application-dependent fashion. Novel numerical algorithms or more stochastic computational approaches may be required to meet accuracy requirements in the face of undetectable soft errors. These ideas constituted an essential topic of the seminar. The goal of this Dagstuhl Seminar was to bring together a diverse group of scientists with expertise in exascale computing to discuss novel ways to make applications resilient against detected and undetected faults. In particular, participants explored the role that algorithms and applications play in the holistic approach needed to tackle this challenge. This article gathers a broad range of perspectives on the role of algorithms, applications and systems in achieving resilience for extreme scale simulations. The ultimate goal is to spark novel ideas and encourage the development of concrete solutions for achieving such resilience holistically.Peer Reviewed"Article signat per 36 autors/es: Emmanuel Agullo, Mirco Altenbernd, Hartwig Anzt, Leonardo Bautista-Gomez, Tommaso Benacchio, Luca Bonaventura, Hans-Joachim Bungartz, Sanjay Chatterjee, Florina M. Ciorba, Nathan DeBardeleben, Daniel Drzisga, Sebastian Eibl, Christian Engelmann, Wilfried N. Gansterer, Luc Giraud, Dominik G ̈oddeke, Marco Heisig, Fabienne Jezequel, Nils Kohl, Xiaoye Sherry Li, Romain Lion, Miriam Mehl, Paul Mycek, Michael Obersteiner, Enrique S. Quintana-Ortiz, Francesco Rizzi, Ulrich Rude, Martin Schulz, Fred Fung, Robert Speck, Linda Stals, Keita Teranishi, Samuel Thibault, Dominik Thonnes, Andreas Wagner and Barbara Wohlmuth"Postprint (author's final draft

    Efficient openMP over sequentially consistent distributed shared memory systems

    Get PDF
    Nowadays clusters are one of the most used platforms in High Performance Computing and most programmers use the Message Passing Interface (MPI) library to program their applications in these distributed platforms getting their maximum performance, although it is a complex task. On the other side, OpenMP has been established as the de facto standard to program applications on shared memory platforms because it is easy to use and obtains good performance without too much effort. So, could it be possible to join both worlds? Could programmers use the easiness of OpenMP in distributed platforms? A lot of researchers think so. And one of the developed ideas is the distributed shared memory (DSM), a software layer on top of a distributed platform giving an abstract shared memory view to the applications. Even though it seems a good solution it also has some inconveniences. The memory coherence between the nodes in the platform is difficult to maintain (complex management, scalability issues, high overhead and others) and the latency of the remote-memory accesses which can be orders of magnitude greater than on a shared bus due to the interconnection network. Therefore this research improves the performance of OpenMP applications being executed on distributed memory platforms using a DSM with sequential consistency evaluating thoroughly the results from the NAS parallel benchmarks. The vast majority of designed DSMs use a relaxed consistency model because it avoids some major problems in the area. In contrast, we use a sequential consistency model because we think that showing these potential problems that otherwise are hidden may allow the finding of some solutions and, therefore, apply them to both models. The main idea behind this work is that both runtimes, the OpenMP and the DSM layer, should cooperate to achieve good performance, otherwise they interfere one each other trashing the final performance of applications. We develop three different contributions to improve the performance of these applications: (a) a technique to avoid false sharing at runtime, (b) a technique to mimic the MPI behaviour, where produced data is forwarded to their consumers and, finally, (c) a mechanism to avoid the network congestion due to the DSM coherence messages. The NAS Parallel Benchmarks are used to test the contributions. The results of this work shows that the false-sharing problem is a relative problem depending on each application. Another result is the importance to move the data flow outside of the critical path and to use techniques that forwards data as early as possible, similar to MPI, benefits the final application performance. Additionally, this data movement is usually concentrated at single points and affects the application performance due to the limited bandwidth of the network. Therefore it is necessary to provide mechanisms that allows the distribution of this data through the computation time using an otherwise idle network. Finally, results shows that the proposed contributions improve the performance of OpenMP applications on this kind of environments

    An extensive study on iterative solver resilience : characterization, detection and prediction

    Get PDF
    Soft errors caused by transient bit flips have the potential to significantly impactan applicalion's behavior. This has motivated the design of an array of techniques to detect, isolate, and correct soft errors using microarchitectural, architectural, compilation­based, or application-level techniques to minimize their impact on the executing application. The first step toward the design of good error detection/correction techniques involves an understanding of an application's vulnerability to soft errors. This work focuses on silent data e orruption's effects on iterative solvers and efforts to mitigate those effects. In this thesis, we first present the first comprehensive characterizalion of !he impact of soft errors on !he convergen ce characteris tics of six iterative methods using application-level fault injection. We analyze the impact of soft errors In terms of the type of error (single-vs multi-bit), the distribution and location of bits affected, the data structure and statement impacted, and varialion with time. We create a public access database with more than 1.5 million fault injection results. We then analyze the performance of soft error detection mechanisms and present the comparalive results. Molivated by our observations, we evaluate a machine-learning based detector that takes as features that are the runtime features observed by the individual detectors to arrive al their conclusions. Our evalualion demonstrates improved results over individual detectors. We then propase amachine learning based method to predict a program's error behavior to make fault injection studies more efficient. We demonstrate this method on asse ssing the performance of soft error detectors. We show that our method maintains 84% accuracy on average with up to 53% less cost. We also show, once a model is trained further fault injection tests would cost 10% of the expected full fault injection runs.“Soft errors” causados por cambios de estado transitorios en bits, tienen el potencial de impactar significativamente el comportamiento de una aplicación. Esto, ha motivado el diseño de una variedad de técnicas para detectar, aislar y corregir soft errors aplicadas a micro-arquitecturas, arquitecturas, tiempo de compilación y a nivel de aplicación para minimizar su impacto en la ejecución de una aplicación. El primer paso para diseñar una buna técnica de detección/corrección de errores, implica el conocimiento de las vulnerabilidades de la aplicación ante posibles soft errors. Este trabajo se centra en los efectos de la corrupción silenciosa de datos en soluciones iterativas, así como en los esfuerzos para mitigar esos efectos. En esta tesis, primeramente, presentamos la primera caracterización extensiva del impacto de soft errors sobre las características convergentes de seis métodos iterativos usando inyección de fallos a nivel de aplicación. Analizamos el impacto de los soft errors en términos del tipo de error (único vs múltiples-bits), de la distribución y posición de los bits afectados, las estructuras de datos, instrucciones afectadas y de las variaciones en el tiempo. Creamos una base de datos pública con más de 1.5 millones de resultados de inyección de fallos. Después, analizamos el desempeño de mecanismos de detección de soft errors actuales y presentamos los resultados de su comparación. Motivados por las observaciones de los resultados presentados, evaluamos un detector de soft errors basado en técnicas de machine learning que toma como entrada las características observadas en el tiempo de ejecución individual de los detectores anteriores al llegar a su conclusión. La evaluación de los resultados obtenidos muestra una mejora por sobre los detectores individualmente. Basados en estos resultados propusimos un método basado en machine learning para predecir el comportamiento de los errores en un programa con el fin de hacer el estudio de inyección de errores mas eficiente. Presentamos este método para evaluar el rendimiento de los detectores de soft errors. Demostramos que nuestro método mantiene una precisión del 84% en promedio con hasta un 53% de mejora en el tiempo de ejecución. También mostramos que una vez que un modelo ha sido entrenado, las pruebas de inyección de errores siguientes costarían 10% del tiempo esperado de ejecución.Postprint (published version

    Keeping checkpoint/restart viable for exascale systems

    Get PDF
    Next-generation exascale systems, those capable of performing a quintillion operations per second, are expected to be delivered in the next 8-10 years. These systems, which will be 1,000 times faster than current systems, will be of unprecedented scale. As these systems continue to grow in size, faults will become increasingly common, even over the course of small calculations. Therefore, issues such as fault tolerance and reliability will limit application scalability. Current techniques to ensure progress across faults like checkpoint/restart, the dominant fault tolerance mechanism for the last 25 years, are increasingly problematic at the scales of future systems due to their excessive overheads. In this work, we evaluate a number of techniques to decrease the overhead of checkpoint/restart and keep this method viable for future exascale systems. More specifically, this work evaluates state-machine replication to dramatically increase the checkpoint interval (the time between successive checkpoints) and hash-based, probabilistic incremental checkpointing using graphics processing units to decrease the checkpoint commit time (the time to save one checkpoint). Using a combination of empirical analysis, modeling, and simulation, we study the costs and benefits of these approaches on a wide range of parameters. These results, which cover of number of high-performance computing capability workloads, different failure distributions, hardware mean time to failures, and I/O bandwidths, show the potential benefits of these techniques for meeting the reliability demands of future exascale platforms

    Exploring coordinated software and hardware support for hardware resource allocation

    Get PDF
    Multithreaded processors are now common in the industry as they offer high performance at a low cost. Traditionally, in such processors, the assignation of hardware resources between the multiple threads is done implicitly, by the hardware policies. However, a new class of multithreaded hardware allows the explicit allocation of resources to be controlled or biased by the software. Currently, there is little or no coordination between the allocation of resources done by the hardware and the prioritization of tasks done by the software.This thesis targets to narrow the gap between the software and the hardware, with respect to the hardware resource allocation, by proposing a new explicit resource allocation hardware mechanism and novel schedulers that use the currently available hardware resource allocation mechanisms.It approaches the problem in two different types of computing systems: on the high performance computing domain, we characterize the first processor to present a mechanism that allows the software to bias the allocation hardware resources, the IBM POWER5. In addition, we propose the use of hardware resource allocation as a way to balance high performance computing applications. Finally, we propose two new scheduling mechanisms that are able to transparently and successfully balance applications in real systems using the hardware resource allocation. On the soft real-time domain, we propose a hardware extension to the existing explicit resource allocation hardware and, in addition, two software schedulers that use the explicit allocation hardware to improve the schedulability of tasks in a soft real-time system.In this thesis, we demonstrate that system performance improves by making the software aware of the mechanisms to control the amount of resources given to each running thread. In particular, for the high performance computing domain, we show that it is possible to decrease the execution time of MPI applications biasing the hardware resource assignation between threads. In addition, we show that it is possible to decrease the number of missed deadlines when scheduling tasks in a soft real-time SMT system.Postprint (published version
    corecore