7 research outputs found

    The interactive medical simulation toolkit (iMSTK): an open source platform for surgical simulation

    Get PDF
    Introduction: Human error is one of the leading causes of medical error. It is estimated that human error leads to between 250,000 and 440,000 deaths each year. Medical simulation has been shown to improve the skills and confidence of clinicians and reduce medical errors. Surgical simulation is critical for training surgeons in complicated procedures and can be particularly effective in skill retention.Methods: The interactive Medical Simulation Toolkit (iMSTK) is an open source platform with position-based dynamics, continuous collision detection, smooth particle hydrodynamics, integrated haptics, and compatibility with Unity and Unreal, among others. iMSTK provides a wide range of real-time simulation capabilities with a flexible open-source license (Apache 2.0) that encourages adoption across the research and commercial simulation communities. iMSTK uses extended position-based dynamics and an established collision and constraint implementations to model biological tissues and their interactions with medical tools and other tissues.Results: The platform demonstrates performance, that is, compatible with real-time simulation that incorporates both visualization and haptics. iMSTK has been used in a variety of virtual simulations, including for laparoscopic hiatal hernia surgery, laparoscopic cholecystectomy, osteotomy procedures, and kidney biopsy procedures.Discussion: iMSTK currently supports building simulations for a wide range of surgical scenarios. Future work includes expanding Unity support to make it easier to use and improving the speed of the computation to allow for larger scenes and finer meshes for larger surgical procedures

    Generation and Analysis of Content for Physics-Based Video Games

    Get PDF
    The development of artificial intelligence (AI) techniques that can assist with the creation and analysis of digital content is a broad and challenging task for researchers. This topic has been most prevalent in the field of game AI research, where games are used as a testbed for solving more complex real-world problems. One of the major issues with prior AI-assisted content creation methods for games has been a lack of direct comparability to real-world environments, particularly those with realistic physical properties to consider. Creating content for such environments typically requires physics-based reasoning, which imposes many additional complications and restrictions that must be considered. Addressing and developing methods that can deal with these physical constraints, even if they are only within simulated game environments, is an important and challenging task for AI techniques that intend to be used in real-world situations. The research presented in this thesis describes several approaches to creating and analysing levels for the physics-based puzzle game Angry Birds, which features a realistic 2D environment. This research was multidisciplinary in nature and covers a wide variety of different AI fields, leading to this thesis being presented as a compilation of published work. The central part of this thesis consists of procedurally generating levels for physics-based games similar to those in Angry Birds. This predominantly involves creating and placing stable structures made up of many smaller blocks, as well as other level elements. Multiple approaches are presented, including both fully autonomous and human-AI collaborative methodologies. In addition, several analyses of Angry Birds levels were carried out using current state-of-the-art agents. A hyper-agent was developed that uses machine learning to estimate the performance of each agent in a portfolio for an unknown level, allowing it to select the one most likely to succeed. Agent performance on levels that contain deceptive or creative properties was also investigated, allowing determination of the current strengths and weaknesses of different AI techniques. The observed variability in performance across levels for different AI techniques led to the development of an adaptive level generation system, allowing for the dynamic creation of increasingly challenging levels over time based on agent performance analysis. An additional study also investigated the theoretical complexity of Angry Birds levels from a computational perspective. While this research is predominately applied to video games with physics-based simulated environments, the challenges and problems solved by the proposed methods also have significant real-world potential and applications

    On Wargaming

    Get PDF
    Wargames are as old as civilization—and perhaps older. In his informative and entertaining Public Broadcasting series Connections, James Burke argued that the first invention, the one that enabled all later inventions, was the plow. It allowed agriculture, and as agriculture permitted denser populations, the frequency of inventions increased, due either to “connecting” with new applications or combining with other inventions to create one that was greater than the sum of its parts.https://digital-commons.usnwc.edu/usnwc-newport-papers/1043/thumbnail.jp

    Winona Daily News

    Get PDF
    https://openriver.winona.edu/winonadailynews/2185/thumbnail.jp

    Library buildings around the world

    Get PDF
    "Library Buildings around the World" is a survey based on researches of several years. The objective was to gather library buildings on an international level starting with 1990

    Treatment of Later Humoral Rejection with Anti-CD20 Monoclonal Antibody Rituximab: A Single Centre Experience

    Get PDF
    Humoral or vascular rejection is a B cell-mediated production of immunoglobulin (Ig) G antibody against a transplanted organ that results in immune complex deposition on the vascular endothelium, activation of the complement cascade, production of endothelial dysfunction and regional ischaemic injury
    corecore