22 research outputs found

    Publications from NIAS: January 1988-June 2013 (NIAS Report No. R23-2014)

    Get PDF
    This report has a bibliographic listing of all the publications from NIAS since inception till June 201

    NIAS Annual Report 2016-2017

    Get PDF

    Randomness Generation for Secure Hardware Masking - Unrolled Trivium to the Rescue

    Get PDF
    Masking is a prominent strategy to protect cryptographic implementations against side-channel analysis. Its popularity arises from the exponential security gains that can be achieved for (approximately) quadratic resource utilization. Many variants of the countermeasure tailored for different optimization goals have been proposed over the past decades. The common denominator among all of them is the implicit demand for robust and high entropy randomness. Simply assuming that uniformly distributed random bits are available, without taking the cost of their generation into account, leads to a poor understanding of the efficiency and performance of secure implementations. This is especially relevant in case of hardware masking schemes which are known to consume large amounts of random bits per cycle due to parallelism. Currently, there seems to be no consensus on how to most efficiently derive many pseudo-random bits per clock cycle from an initial seed and with properties suitable for masked hardware implementations. In this work, we evaluate a number of building blocks for this purpose and find that hardware-oriented stream ciphers like Trivium and its reduced-security variant Bivium B outperform all competitors when implemented in an unrolled fashion. Unrolled implementations of these primitives enable the flexible generation of many bits per cycle while maintaining high performance, which is crucial for satisfying the large randomness demands of state-of-the-art masking schemes. According to our analysis, only Linear Feedback Shift Registers (LFSRs), when also unrolled, are capable of producing long non-repetitive sequences of random-looking bits at a high rate per cycle even more efficiently than Trivium and Bivium B. Yet, these instances do not provide black-box security as they generate only linear outputs. We experimentally demonstrate that using multiple output bits from an LFSR in the same masked implementation can violate probing security and even lead to harmful randomness cancellations. Circumventing these problems, and enabling an independent analysis of randomness generation and masking scheme, requires the use of cryptographically stronger primitives like stream ciphers. As a result of our studies, we provide an evidence-based estimate for the cost of securely generating n fresh random bits per cycle. Depending on the desired level of black-box security and operating frequency, this cost can be as low as 20n to 30n ASIC gate equivalents (GE) or 3n to 4n FPGA look-up tables (LUTs), where n is the number of random bits required. Our results demonstrate that the cost per bit is (sometimes significantly) lower than estimated in previous works, incentivizing parallelism whenever exploitable and potentially moving low randomness usage in hardware masking research from a primary to secondary design goal

    One Health for Dog-mediated Rabies Elimination in Asia. A Collection of Local Experiences

    Get PDF
    Although an effective human rabies vaccine has existed since 1885, rabies continues to kill an estimated 59,000 people every year. Sixty per cent of these human deaths occur in Asia. The number of animals, especially dogs, who die of rabies is uncalculated. To work towards the global target of eliminating dog-mediated human rabies deaths, the rabies community is applying the One Health approach by jointly focusing on humans and dogs. Written by a multidisciplinary group of scholars and rabies control programme specialists, this book is a collection of experiences and observations on the challenges and successes along the path to rabies control and prevention in Asia. The book: grounds chapters in solid scientific theory, but retains a direct, practice-focused and inspirational approach;provides numerous examples of lessons learned and experience-based knowledge gained across countries at different levels of rabies elimination;brings together and highlights the practices of a strong, international rabies network that works according to the One Health concept. Covering perspectives from almost a dozen Asian countries and a wide range of sectors and disciplines, such as healthcare facilities, veterinary services, laboratories, public health institutes, wildlife research centres and academia, this book is an invaluable resource for rabies practitioners and scholars, but also those working in the wider fields of disease control and cross-sectoral One Health

    Evaluating Information Retrieval and Access Tasks

    Get PDF
    This open access book summarizes the first two decades of the NII Testbeds and Community for Information access Research (NTCIR). NTCIR is a series of evaluation forums run by a global team of researchers and hosted by the National Institute of Informatics (NII), Japan. The book is unique in that it discusses not just what was done at NTCIR, but also how it was done and the impact it has achieved. For example, in some chapters the reader sees the early seeds of what eventually grew to be the search engines that provide access to content on the World Wide Web, today’s smartphones that can tailor what they show to the needs of their owners, and the smart speakers that enrich our lives at home and on the move. We also get glimpses into how new search engines can be built for mathematical formulae, or for the digital record of a lived human life. Key to the success of the NTCIR endeavor was early recognition that information access research is an empirical discipline and that evaluation therefore lay at the core of the enterprise. Evaluation is thus at the heart of each chapter in this book. They show, for example, how the recognition that some documents are more important than others has shaped thinking about evaluation design. The thirty-three contributors to this volume speak for the many hundreds of researchers from dozens of countries around the world who together shaped NTCIR as organizers and participants. This book is suitable for researchers, practitioners, and students—anyone who wants to learn about past and present evaluation efforts in information retrieval, information access, and natural language processing, as well as those who want to participate in an evaluation task or even to design and organize one

    Side-Channel Analysis and Cryptography Engineering : Getting OpenSSL Closer to Constant-Time

    Get PDF
    As side-channel attacks reached general purpose PCs and started to be more practical for attackers to exploit, OpenSSL adopted in 2005 a flagging mechanism to protect against SCA. The opt-in mechanism allows to flag secret values, such as keys, with the BN_FLG_CONSTTIME flag. Whenever a flag is checked and detected, the library changes its execution flow to SCA-secure functions that are slower but safer, protecting these secret values from being leaked. This mechanism favors performance over security, it is error-prone, and is obscure for most library developers, increasing the potential for side-channel vulnerabilities. This dissertation presents an extensive side-channel analysis of OpenSSL and criticizes its fragile flagging mechanism. This analysis reveals several flaws affecting the library resulting in multiple side-channel attacks, improved cache-timing attack techniques, and a new side channel vector. The first part of this dissertation introduces the main topic and the necessary related work, including the microarchitecture, the cache hierarchy, and attack techniques; then it presents a brief troubled history of side-channel attacks and defenses in OpenSSL, setting the stage for the related publications. This dissertation includes seven original publications contributing to the area of side-channel analysis, microarchitecture timing attacks, and applied cryptography. From an SCA perspective, the results identify several vulnerabilities and flaws enabling protocol-level attacks on RSA, DSA, and ECDSA, in addition to full SCA of the SM2 cryptosystem. With respect to microarchitecture timing attacks, the dissertation presents a new side-channel vector due to port contention in the CPU execution units. And finally, on the applied cryptography front, OpenSSL now enjoys a revamped code base securing several cryptosystems against SCA, favoring a secure-by-default protection against side-channel attacks, instead of the insecure opt-in flagging mechanism provided by the fragile BN_FLG_CONSTTIME flag
    corecore