4 research outputs found

    A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs

    Full text link
    We propose a fixed-parameter tractable algorithm for the \textsc{Max-Cut} problem on embedded 1-planar graphs parameterized by the crossing number kk of the given embedding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithm recursively reduces a 1-planar graph to at most 3k3^k planar graphs, using edge removal and node contraction. The \textsc{Max-Cut} problem is then solved on the planar graphs using established polynomial-time algorithms. We show that a maximum cut in the given 1-planar graph can be derived from the solutions for the planar graphs. Our algorithm computes a maximum cut in an embedded 1-planar graph with nn nodes and kk edge crossings in time O(3kn3/2logn)\mathcal{O}(3^k \cdot n^{3/2} \log n).Comment: conference version from IWOCA 201

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF
    corecore