35 research outputs found

    Clustering of streaming time series is meaningless

    Get PDF

    INDEPENDENT DE-DUPLICATION IN DATA CLEANING

    Get PDF
    Many organizations collect large amounts of data to support their business and decision-making processes. The data originate from a variety of sources that may have inherent data-quality problems. These problems become more pronounced when heterogeneous data sources are integrated (for example, in data warehouses). A major problem that arises from integrating different databases is the existence of duplicates. The challenge of de-duplication is identifying “equivalent” records within the database. Most published research in de-duplication propose techniques that rely heavily on domain knowledge. A few others propose solutions that are partially domain-independent. This paper identifies two levels of domain-independence in de-duplication namely: domain-independence at the attribute level, and domain-independence at the record level. The paper then proposes a positional algorithm that achieves domain-independent de-duplication at the attribute level, and a technique for field weighting by data profiling, which, when used with the positional algorithm, achieves domain-independence at the record level. Experiments show that the proposed techniques achieve more accurate de-duplication than the existing algorithms

    A Review of Subsequence Time Series Clustering

    Get PDF
    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies

    Hercules Against Data Series Similarity Search

    Full text link
    We propose Hercules, a parallel tree-based technique for exact similarity search on massive disk-based data series collections. We present novel index construction and query answering algorithms that leverage different summarization techniques, carefully schedule costly operations, optimize memory and disk accesses, and exploit the multi-threading and SIMD capabilities of modern hardware to perform CPU-intensive calculations. We demonstrate the superiority and robustness of Hercules with an extensive experimental evaluation against state-of-the-art techniques, using many synthetic and real datasets, and query workloads of varying difficulty. The results show that Hercules performs up to one order of magnitude faster than the best competitor (which is not always the same). Moreover, Hercules is the only index that outperforms the optimized scan on all scenarios, including the hard query workloads on disk-based datasets. This paper was published in the Proceedings of the VLDB Endowment, Volume 15, Number 10, June 2022

    ProS: Data Series Progressive k-NN Similarity Search and Classification with Probabilistic Quality Guarantees

    Full text link
    Existing systems dealing with the increasing volume of data series cannot guarantee interactive response times, even for fundamental tasks such as similarity search. Therefore, it is necessary to develop analytic approaches that support exploration and decision making by providing progressive results, before the final and exact ones have been computed. Prior works lack both efficiency and accuracy when applied to large-scale data series collections. We present and experimentally evaluate ProS, a new probabilistic learning-based method that provides quality guarantees for progressive Nearest Neighbor (NN) query answering. We develop our method for k-NN queries and demonstrate how it can be applied with the two most popular distance measures, namely, Euclidean and Dynamic Time Warping (DTW). We provide both initial and progressive estimates of the final answer that are getting better during the similarity search, as well suitable stopping criteria for the progressive queries. Moreover, we describe how this method can be used in order to develop a progressive algorithm for data series classification (based on a k-NN classifier), and we additionally propose a method designed specifically for the classification task. Experiments with several and diverse synthetic and real datasets demonstrate that our prediction methods constitute the first practical solutions to the problem, significantly outperforming competing approaches. This paper was published in the VLDB Journal (2022)

    Mining frequent sequential patterns in data streams using SSM-algorithm.

    Get PDF
    Frequent sequential mining is the process of discovering frequent sequential patterns in data sequences as found in applications like web log access sequences. In data stream applications, data arrive at high speed rates in a continuous flow. Data stream mining is an online process different from traditional mining. Traditional mining algorithms work on an entire static dataset in order to obtain results while data stream mining algorithms work with continuously arriving data streams. With rapid change in technology, there are many applications that take data as continuous streams. Examples include stock tickers, network traffic measurements, click stream data, data feeds from sensor networks, and telecom call records. Mining frequent sequential patterns on data stream applications contend with many challenges such as limited memory for unlimited data, inability of algorithms to scan infinitely flowing original dataset more than once and to deliver current and accurate result on demand. This thesis proposes SSM-Algorithm (sequential stream mining-algorithm) that delivers frequent sequential patterns in data streams. The concept of this work came from FP-Stream algorithm that delivers time sensitive frequent patterns. Proposed SSM-Algorithm outperforms FP-Stream algorithm by the use of a hash based and two efficient tree based data structures. All incoming streams are handled dynamically to improve memory usage. SSM-Algorithm maintains frequent sequences incrementally and delivers most current result on demand. The introduced algorithm can be deployed to analyze e-commerce data where the primary source of the data is click stream data. (Abstract shortened by UMI.)Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .M668. Source: Masters Abstracts International, Volume: 44-03, page: 1409. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Data-driven conceptual modeling: how some knowledge drivers for the enterprise might be mined from enterprise data

    Get PDF
    As organizations perform their business, they analyze, design and manage a variety of processes represented in models with different scopes and scale of complexity. Specifying these processes requires a certain level of modeling competence. However, this condition does not seem to be balanced with adequate capability of the person(s) who are responsible for the task of defining and modeling an organization or enterprise operation. On the other hand, an enterprise typically collects various records of all events occur during the operation of their processes. Records, such as the start and end of the tasks in a process instance, state transitions of objects impacted by the process execution, the message exchange during the process execution, etc., are maintained in enterprise repositories as various logs, such as event logs, process logs, effect logs, message logs, etc. Furthermore, the growth rate in the volume of these data generated by enterprise process execution has increased manyfold in just a few years. On top of these, models often considered as the dashboard view of an enterprise. Models represents an abstraction of the underlying reality of an enterprise. Models also served as the knowledge driver through which an enterprise can be managed. Data-driven extraction offers the capability to mine these knowledge drivers from enterprise data and leverage the mined models to establish the set of enterprise data that conforms with the desired behaviour. This thesis aimed to generate models or knowledge drivers from enterprise data to enable some type of dashboard view of enterprise to provide support for analysts. The rationale for this has been started as the requirement to improve an existing process or to create a new process. It was also mentioned models can also serve as a collection of effectors through which an organization or an enterprise can be managed. The enterprise data refer to above has been identified as process logs, effect logs, message logs, and invocation logs. The approach in this thesis is to mine these logs to generate process, requirement, and enterprise architecture models, and how goals get fulfilled based on collected operational data. The above a research question has been formulated as whether it is possible to derive the knowledge drivers from the enterprise data, which represent the running operation of the enterprise, or in other words, is it possible to use the available data in the enterprise repository to generate the knowledge drivers? . In Chapter 2, review of literature that can provide the necessary background knowledge to explore the above research question has been presented. Chapter 3 presents how process semantics can be mined. Chapter 4 suggest a way to extract a requirements model. The Chapter 5 presents a way to discover the underlying enterprise architecture and Chapter 6 presents a way to mine how goals get orchestrated. Overall finding have been discussed in Chapter 7 to derive some conclusions
    corecore