24 research outputs found

    Gamifying Language Resource Acquisition

    Get PDF
    PhD ThesisNatural Language Processing, is an important collection of methods for processing the vast amounts of available natural language text we continually produce. These methods make use of supervised learning, an approach that learns from large amounts of annotated data. As humans, we’re able to provide information about text that such systems can learn from. Historically, this was carried out by small groups of experts. However, this did not scale. This led to various crowdsourcing approaches being taken that used large pools of non-experts. The traditional form of crowdsourcing was to pay users small amounts of money to complete tasks. As time progressed, gamification approaches such as GWAPs, showed various benefits over the micro-payment methods used before. These included a cost saving, worker training opportunities, increased worker engagement and potential to far exceed the scale of crowdsourcing. While these were successful in domains such as image labelling, they struggled in the domain of text annotation, which wasn’t such a natural fit. Despite many challenges, there were also clearly many opportunities and benefits to applying this approach to text annotation. Many of these are demonstrated by Phrase Detectives. Based on lessons learned from Phrase Detectives and investigations into other GWAPs, in this work, we attempt to create full GWAPs for NLP, extracting the benefits of the methodology. This includes training, high quality output from non-experts and a truly game-like GWAP design that players are happy to play voluntarily

    Evaluating visually grounded language capabilities using microworlds

    Get PDF
    Deep learning has had a transformative impact on computer vision and natural language processing. As a result, recent years have seen the introduction of more ambitious holistic understanding tasks, comprising a broad set of reasoning abilities. Datasets in this context typically act not just as application-focused benchmark, but also as basis to examine higher-level model capabilities. This thesis argues that emerging issues related to dataset quality, experimental practice and learned model behaviour are symptoms of the inappropriate use of benchmark datasets for capability-focused assessment. To address this deficiency, a new evaluation methodology is proposed here, which specifically targets in-depth investigation of model performance based on configurable data simulators. This focus on analysing system behaviour is complementary to the use of monolithic datasets as application-focused comparative benchmarks. Visual question answering is an example of a modern holistic understanding task, unifying a range of abilities around visually grounded language understanding in a single problem statement. It has also been an early example for which some of the aforementioned issues were identified. To illustrate the new evaluation approach, this thesis introduces ShapeWorld, a diagnostic data generation framework. Its design is guided by the goal to provide a configurable and extensible testbed for the domain of visually grounded language understanding. Based on ShapeWorld data, the strengths and weaknesses of various state-of-the-art visual question answering models are analysed and compared in detail, with respect to their ability to correctly handle statements involving, for instance, spatial relations or numbers. Finally, three case studies illustrate the versatility of this approach and the ShapeWorld generation framework: an investigation of multi-task and curriculum learning, a replication of a psycholinguistic study for deep learning models, and an exploration of a new approach to assess generative tasks like image captioning.Qualcomm Award Premium Research Studentship, Engineering and Physical Sciences Research Council Doctoral Training Studentshi

    Low-Resource Unsupervised NMT:Diagnosing the Problem and Providing a Linguistically Motivated Solution

    Get PDF
    Unsupervised Machine Translation hasbeen advancing our ability to translatewithout parallel data, but state-of-the-artmethods assume an abundance of mono-lingual data. This paper investigates thescenario where monolingual data is lim-ited as well, finding that current unsuper-vised methods suffer in performance un-der this stricter setting. We find that theperformance loss originates from the poorquality of the pretrained monolingual em-beddings, and we propose using linguis-tic information in the embedding train-ing scheme. To support this, we look attwo linguistic features that may help im-prove alignment quality: dependency in-formation and sub-word information. Us-ing dependency-based embeddings resultsin a complementary word representationwhich offers a boost in performance ofaround 1.5 BLEU points compared to stan-dardWORD2VECwhen monolingual datais limited to 1 million sentences per lan-guage. We also find that the inclusion ofsub-word information is crucial to improv-ing the quality of the embedding
    corecore