32 research outputs found

    Parallel architectures and runtime systems co-design for task-based programming models

    Get PDF
    The increasing parallelism levels in modern computing systems has extolled the need for a holistic vision when designing multiprocessor architectures taking in account the needs of the programming models and applications. Nowadays, system design consists of several layers on top of each other from the architecture up to the application software. Although this design allows to do a separation of concerns where it is possible to independently change layers due to a well-known interface between them, it is hampering future systems design as the Law of Moore reaches to an end. Current performance improvements on computer architecture are driven by the shrinkage of the transistor channel width, allowing faster and more power efficient chips to be made. However, technology is reaching physical limitations were the transistor size will not be able to be reduced furthermore and requires a change of paradigm in systems design. This thesis proposes to break this layered design, and advocates for a system where the architecture and the programming model runtime system are able to exchange information towards a common goal, improve performance and reduce power consumption. By making the architecture aware of runtime information such as a Task Dependency Graph (TDG) in the case of dataflow task-based programming models, it is possible to improve power consumption by exploiting the critical path of the graph. Moreover, the architecture can provide hardware support to create such a graph in order to reduce the runtime overheads and making possible the execution of fine-grained tasks to increase the available parallelism. Finally, the current status of inter-node communication primitives can be exposed to the runtime system in order to perform a more efficient communication scheduling, and also creates new opportunities of computation and communication overlap that were not possible before. An evaluation of the proposals introduced in this thesis is provided and a methodology to simulate and characterize the application behavior is also presented.El aumento del paralelismo proporcionado por los sistemas de cómputo modernos ha provocado la necesidad de una visión holística en el diseño de arquitecturas multiprocesador que tome en cuenta las necesidades de los modelos de programación y las aplicaciones. Hoy en día el diseño de los computadores consiste en diferentes capas de abstracción con una interfaz bien definida entre ellas. Las limitaciones de esta aproximación junto con el fin de la ley de Moore limitan el potencial de los futuros computadores. La mayoría de las mejoras actuales en el diseño de los computadores provienen fundamentalmente de la reducción del tamaño del canal del transistor, lo cual permite chips más rápidos y con un consumo eficiente sin apenas cambios fundamentales en el diseño de la arquitectura. Sin embargo, la tecnología actual está alcanzando limitaciones físicas donde no será posible reducir el tamaño de los transistores motivando así un cambio de paradigma en la construcción de los computadores. Esta tesis propone romper este diseño en capas y abogar por un sistema donde la arquitectura y el sistema de tiempo de ejecución del modelo de programación sean capaces de intercambiar información para alcanzar una meta común: La mejora del rendimiento y la reducción del consumo energético. Haciendo que la arquitectura sea consciente de la información disponible en el modelo de programación, como puede ser el grafo de dependencias entre tareas en los modelos de programación dataflow, es posible reducir el consumo energético explotando el camino critico del grafo. Además, la arquitectura puede proveer de soporte hardware para crear este grafo con el objetivo de reducir el overhead de construir este grado cuando la granularidad de las tareas es demasiado fina. Finalmente, el estado de las comunicaciones entre nodos puede ser expuesto al sistema de tiempo de ejecución para realizar una mejor planificación de las comunicaciones y creando nuevas oportunidades de solapamiento entre cómputo y comunicación que no eran posibles anteriormente. Esta tesis aporta una evaluación de todas estas propuestas, así como una metodología para simular y caracterizar el comportamiento de las aplicacionesPostprint (published version

    A Process Model for the Integrated Reasoning about Quantitative IT Infrastructure Attributes

    Get PDF
    IT infrastructures can be quantitatively described by attributes, like performance or energy efficiency. Ever-changing user demands and economic attempts require varying short-term and long-term decisions regarding the alignment of an IT infrastructure and particularly its attributes to this dynamic surrounding. Potentially conflicting attribute goals and the central role of IT infrastructures presuppose decision making based upon reasoning, the process of forming inferences from facts or premises. The focus on specific IT infrastructure parts or a fixed (small) attribute set disqualify existing reasoning approaches for this intent, as they neither cover the (complex) interplay of all IT infrastructure components simultaneously, nor do they address inter- and intra-attribute correlations sufficiently. This thesis presents a process model for the integrated reasoning about quantitative IT infrastructure attributes. The process model’s main idea is to formalize the compilation of an individual reasoning function, a mathematical mapping of parametric influencing factors and modifications on an attribute vector. Compilation bases upon model integration to benefit from the multitude of existing specialized, elaborated, and well-established attribute models. The achieved reasoning function consumes an individual tuple of IT infrastructure components, attributes, and external influencing factors to expose a broad applicability. The process model formalizes a reasoning intent in three phases. First, reasoning goals and parameters are collected in a reasoning suite, and formalized in a reasoning function skeleton. Second, the skeleton is iteratively refined, guided by the reasoning suite. Third, the achieved reasoning function is employed for What-if analyses, optimization, or descriptive statistics to conduct the concrete reasoning. The process model provides five template classes that collectively formalize all phases in order to foster reproducibility and to reduce error-proneness. Process model validation is threefold. A controlled experiment reasons about a Raspberry Pi cluster’s performance and energy efficiency to illustrate feasibility. Besides, a requirements analysis on a world-class supercomputer and on the European-wide execution of hydro meteorology simulations as well as a related work examination disclose the process model’s level of innovation. Potential future work employs prepared automation capabilities, integrates human factors, and uses reasoning results for the automatic generation of modification recommendations.IT-Infrastrukturen können mit Attributen, wie Leistung und Energieeffizienz, quantitativ beschrieben werden. Nutzungsbedarfsänderungen und ökonomische Bestrebungen erfordern Kurz- und Langfristentscheidungen zur Anpassung einer IT-Infrastruktur und insbesondere ihre Attribute an dieses dynamische Umfeld. Potentielle Attribut-Zielkonflikte sowie die zentrale Rolle von IT-Infrastrukturen erfordern eine Entscheidungsfindung mittels Reasoning, einem Prozess, der Rückschlüsse (rein) aus Fakten und Prämissen zieht. Die Fokussierung auf spezifische Teile einer IT-Infrastruktur sowie die Beschränkung auf (sehr) wenige Attribute disqualifizieren bestehende Reasoning-Ansätze für dieses Vorhaben, da sie weder das komplexe Zusammenspiel von IT-Infrastruktur-Komponenten, noch Abhängigkeiten zwischen und innerhalb einzelner Attribute ausreichend berücksichtigen können. Diese Arbeit präsentiert ein Prozessmodell für das integrierte Reasoning über quantitative IT-Infrastruktur-Attribute. Die grundlegende Idee des Prozessmodells ist die Herleitung einer individuellen Reasoning-Funktion, einer mathematischen Abbildung von Einfluss- und Modifikationsparametern auf einen Attributvektor. Die Herleitung basiert auf der Integration bestehender (Attribut-)Modelle, um von deren Spezialisierung, Reife und Verbreitung profitieren zu können. Die erzielte Reasoning-Funktion verarbeitet ein individuelles Tupel aus IT-Infrastruktur-Komponenten, Attributen und externen Einflussfaktoren, um eine breite Anwendbarkeit zu gewährleisten. Das Prozessmodell formalisiert ein Reasoning-Vorhaben in drei Phasen. Zunächst werden die Reasoning-Ziele und -Parameter in einer Reasoning-Suite gesammelt und in einem Reasoning-Funktions-Gerüst formalisiert. Anschließend wird das Gerüst entsprechend den Vorgaben der Reasoning-Suite iterativ verfeinert. Abschließend wird die hergeleitete Reasoning-Funktion verwendet, um mittels “What-if”–Analysen, Optimierungsverfahren oder deskriptiver Statistik das Reasoning durchzuführen. Das Prozessmodell enthält fünf Template-Klassen, die den Prozess formalisieren, um Reproduzierbarkeit zu gewährleisten und Fehleranfälligkeit zu reduzieren. Das Prozessmodell wird auf drei Arten validiert. Ein kontrolliertes Experiment zeigt die Durchführbarkeit des Prozessmodells anhand des Reasonings zur Leistung und Energieeffizienz eines Raspberry Pi Clusters. Eine Anforderungsanalyse an einem Superrechner und an der europaweiten Ausführung von Hydro-Meteorologie-Modellen erläutert gemeinsam mit der Betrachtung verwandter Arbeiten den Innovationsgrad des Prozessmodells. Potentielle Erweiterungen nutzen die vorbereiteten Automatisierungsansätze, integrieren menschliche Faktoren, und generieren Modifikationsempfehlungen basierend auf Reasoning-Ergebnissen

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore