346 research outputs found

    Explainable Information Retrieval: A Survey

    Full text link
    Explainable information retrieval is an emerging research area aiming to make transparent and trustworthy information retrieval systems. Given the increasing use of complex machine learning models in search systems, explainability is essential in building and auditing responsible information retrieval models. This survey fills a vital gap in the otherwise topically diverse literature of explainable information retrieval. It categorizes and discusses recent explainability methods developed for different application domains in information retrieval, providing a common framework and unifying perspectives. In addition, it reflects on the common concern of evaluating explanations and highlights open challenges and opportunities.Comment: 35 pages, 10 figures. Under revie

    Policy-Aware Unbiased Learning to Rank for Top-k Rankings

    Get PDF
    Counterfactual Learning to Rank (LTR) methods optimize ranking systems using logged user interactions that contain interaction biases. Existing methods are only unbiased if users are presented with all relevant items in every ranking. There is currently no existing counterfactual unbiased LTR method for top-k rankings. We introduce a novel policy-aware counterfactual estimator for LTR metrics that can account for the effect of a stochastic logging policy. We prove that the policy-aware estimator is unbiased if every relevant item has a non-zero probability to appear in the top-k ranking. Our experimental results show that the performance of our estimator is not affected by the size of k: for any k, the policy-aware estimator reaches the same retrieval performance while learning from top-k feedback as when learning from feedback on the full ranking. Lastly, we introduce novel extensions of traditional LTR methods to perform counterfactual LTR and to optimize top-k metrics. Together, our contributions introduce the first policy-aware unbiased LTR approach that learns from top-k feedback and optimizes top-k metrics. As a result, counterfactual LTR is now applicable to the very prevalent top-k ranking setting in search and recommendation.Comment: SIGIR 2020 full conference pape

    On Elastic Language Models

    Full text link
    Large-scale pretrained language models have achieved compelling performance in a wide range of language understanding and information retrieval tasks. Knowledge distillation offers an opportunity to compress a large language model to a small one, in order to reach a reasonable latency-performance tradeoff. However, for scenarios where the number of requests (e.g., queries submitted to a search engine) is highly variant, the static tradeoff attained by the compressed language model might not always fit. Once a model is assigned with a static tradeoff, it could be inadequate in that the latency is too high when the number of requests is large or the performance is too low when the number of requests is small. To this end, we propose an elastic language model (ElasticLM) that elastically adjusts the tradeoff according to the request stream. The basic idea is to introduce a compute elasticity to the compressed language model, so that the tradeoff could vary on-the-fly along scalable and controllable compute. Specifically, we impose an elastic structure to enable ElasticLM with compute elasticity and design an elastic optimization to learn ElasticLM under compute elasticity. To serve ElasticLM, we apply an elastic schedule. Considering the specificity of information retrieval, we adapt ElasticLM to dense retrieval and reranking and present ElasticDenser and ElasticRanker respectively. Offline evaluation is conducted on a language understanding benchmark GLUE; and several information retrieval tasks including Natural Question, Trivia QA, and MS MARCO. The results show that ElasticLM along with ElasticDenser and ElasticRanker can perform correctly and competitively compared with an array of static baselines. Furthermore, online simulation with concurrency is also carried out. The results demonstrate that ElasticLM can provide elastic tradeoffs with respect to varying request stream.Comment: 27 pages, 11 figures, 9 table

    Denmark's Participation in the Search Engine TREC COVID-19 Challenge: Lessons Learned about Searching for Precise Biomedical Scientific Information on COVID-19

    Full text link
    This report describes the participation of two Danish universities, University of Copenhagen and Aalborg University, in the international search engine competition on COVID-19 (the 2020 TREC-COVID Challenge) organised by the U.S. National Institute of Standards and Technology (NIST) and its Text Retrieval Conference (TREC) division. The aim of the competition was to find the best search engine strategy for retrieving precise biomedical scientific information on COVID-19 from the largest, at that point in time, dataset of curated scientific literature on COVID-19 -- the COVID-19 Open Research Dataset (CORD-19). CORD-19 was the result of a call to action to the tech community by the U.S. White House in March 2020, and was shortly thereafter posted on Kaggle as an AI competition by the Allen Institute for AI, the Chan Zuckerberg Initiative, Georgetown University's Center for Security and Emerging Technology, Microsoft, and the National Library of Medicine at the US National Institutes of Health. CORD-19 contained over 200,000 scholarly articles (of which more than 100,000 were with full text) about COVID-19, SARS-CoV-2, and related coronaviruses, gathered from curated biomedical sources. The TREC-COVID challenge asked for the best way to (a) retrieve accurate and precise scientific information, in response to some queries formulated by biomedical experts, and (b) rank this information decreasingly by its relevance to the query. In this document, we describe the TREC-COVID competition setup, our participation to it, and our resulting reflections and lessons learned about the state-of-art technology when faced with the acute task of retrieving precise scientific information from a rapidly growing corpus of literature, in response to highly specialised queries, in the middle of a pandemic

    Adapting Learned Sparse Retrieval for Long Documents

    Full text link
    Learned sparse retrieval (LSR) is a family of neural retrieval methods that transform queries and documents into sparse weight vectors aligned with a vocabulary. While LSR approaches like Splade work well for short passages, it is unclear how well they handle longer documents. We investigate existing aggregation approaches for adapting LSR to longer documents and find that proximal scoring is crucial for LSR to handle long documents. To leverage this property, we proposed two adaptations of the Sequential Dependence Model (SDM) to LSR: ExactSDM and SoftSDM. ExactSDM assumes only exact query term dependence, while SoftSDM uses potential functions that model the dependence of query terms and their expansion terms (i.e., terms identified using a transformer's masked language modeling head). Experiments on the MSMARCO Document and TREC Robust04 datasets demonstrate that both ExactSDM and SoftSDM outperform existing LSR aggregation approaches for different document length constraints. Surprisingly, SoftSDM does not provide any performance benefits over ExactSDM. This suggests that soft proximity matching is not necessary for modeling term dependence in LSR. Overall, this study provides insights into handling long documents with LSR, proposing adaptations that improve its performance.Comment: SIGIR 202
    • …
    corecore