198 research outputs found

    Requirements of API Documentation: A Case Study into Computer Vision Services

    Full text link
    Using cloud-based computer vision services is gaining traction, where developers access AI-powered components through familiar RESTful APIs, not needing to orchestrate large training and inference infrastructures or curate/label training datasets. However, while these APIs seem familiar to use, their non-deterministic run-time behaviour and evolution is not adequately communicated to developers. Therefore, improving these services' API documentation is paramount-more extensive documentation facilitates the development process of intelligent software. In a prior study, we extracted 34 API documentation artefacts from 21 seminal works, devising a taxonomy of five key requirements to produce quality API documentation. We extend this study in two ways. Firstly, by surveying 104 developers of varying experience to understand what API documentation artefacts are of most value to practitioners. Secondly, identifying which of these highly-valued artefacts are or are not well-documented through a case study in the emerging computer vision service domain. We identify: (i) several gaps in the software engineering literature, where aspects of API documentation understanding is/is not extensively investigated; and (ii) where industry vendors (in contrast) document artefacts to better serve their end-developers. We provide a set of recommendations to enhance intelligent software documentation for both vendors and the wider research community.Comment: Early Access preprint for an upcoming issue of the IEEE Transactions on Software Engineerin

    Deep Learning for Text Style Transfer: A Survey

    Full text link
    Text style transfer is an important task in natural language generation, which aims to control certain attributes in the generated text, such as politeness, emotion, humor, and many others. It has a long history in the field of natural language processing, and recently has re-gained significant attention thanks to the promising performance brought by deep neural models. In this paper, we present a systematic survey of the research on neural text style transfer, spanning over 100 representative articles since the first neural text style transfer work in 2017. We discuss the task formulation, existing datasets and subtasks, evaluation, as well as the rich methodologies in the presence of parallel and non-parallel data. We also provide discussions on a variety of important topics regarding the future development of this task. Our curated paper list is at https://github.com/zhijing-jin/Text_Style_Transfer_SurveyComment: Computational Linguistics Journal 202

    Computer-supported movement guidance: investigating visual/visuotactile guidance and informing the design of vibrotactile body-worn interfaces

    Get PDF
    This dissertation explores the use of interactive systems to support movement guidance, with applications in various fields such as sports, dance, physiotherapy, and immersive sketching. The research focuses on visual, haptic, and visuohaptic approaches and aims to overcome the limitations of traditional guidance methods, such as dependence on an expert and high costs for the novice. The main contributions of the thesis are (1) an evaluation of the suitability of various types of displays and visualizations of the human body for posture guidance, (2) an investigation into the influence of different viewpoints/perspectives, the addition of haptic feedback, and various movement properties on movement guidance in virtual environments, (3) an investigation into the effectiveness of visuotactile guidance for hand movements in a virtual environment, (4) two in-depth studies of haptic perception on the body to inform the design of wearable and handheld interfaces that leverage tactile output technologies, and (5) an investigation into new interaction techniques for tactile guidance of arm movements. The results of this research advance the state of the art in the field, provide design and implementation insights, and pave the way for new investigations in computer-supported movement guidance

    Deep learning applied to the assessment of online student programming exercises

    Get PDF
    Massive online open courses (MOOCs) teaching coding are increasing in number and popularity. They commonly include homework assignments in which the students must write code that is evaluated by functional tests. Functional testing may to some extent be automated however provision of more qualitative evaluation and feedback may be prohibitively labor-intensive. Provision of qualitative evaluation at scale, automatically, is the subject of much research effort. In this thesis, deep learning is applied to the task of performing automatic assessment of source code, with a focus on provision of qualitative feedback. Four tasks: language modeling, detecting idiomatic code, semantic code search, and predicting variable names are considered in detail. First, deep learning models are applied to the task of language modeling source code. A comparison is made between the performance of different deep learning language models, and it is shown how language models can be used for source code auto-completion. It is also demonstrated how language models trained on source code can be used for transfer learning, providing improved performance on other tasks. Next, an analysis is made on how the language models from the previous task can be used to detect idiomatic code. It is shown that these language models are able to locate where a student has deviated from correct code idioms. These locations can be highlighted to the student in order to provide qualitative feedback. Then, results are shown on semantic code search, again comparing the performance across a variety of deep learning models. It is demonstrated how semantic code search can be used to reduce the time taken for qualitative evaluation, by automatically pairing a student submission with an instructor’s hand-written feedback. Finally, it is examined how deep learning can be used to predict variable names within source code. These models can be used in a qualitative evaluation setting where the deep learning models can be used to suggest more appropriate variable names. It is also shown that these models can even be used to predict the presence of functional errors. Novel experimental results show that: fine-tuning a pre-trained language model is an effective way to improve performance across a variety of tasks on source code, improving performance by 5% on average; pre-trained language models can be used as zero-shot learners across a variety of tasks, with the zero-shot performance of some architectures outperforming the fine-tuned performance of others; and that language models can be used to detect both semantic and syntactic errors. Other novel findings include: removing the non-variable tokens within source code has negligible impact on the performance of models, and that these remaining tokens can be shuffled with only a minimal decrease in performance.Engineering and Physical Sciences Research Council (EPSRC) fundin

    3D Recording and Interpretation for Maritime Archaeology

    Get PDF
    This open access peer-reviewed volume was inspired by the UNESCO UNITWIN Network for Underwater Archaeology International Workshop held at Flinders University, Adelaide, Australia in November 2016. Content is based on, but not limited to, the work presented at the workshop which was dedicated to 3D recording and interpretation for maritime archaeology. The volume consists of contributions from leading international experts as well as up-and-coming early career researchers from around the globe. The content of the book includes recording and analysis of maritime archaeology through emerging technologies, including both practical and theoretical contributions. Topics include photogrammetric recording, laser scanning, marine geophysical 3D survey techniques, virtual reality, 3D modelling and reconstruction, data integration and Geographic Information Systems. The principal incentive for this publication is the ongoing rapid shift in the methodologies of maritime archaeology within recent years and a marked increase in the use of 3D and digital approaches. This convergence of digital technologies such as underwater photography and photogrammetry, 3D sonar, 3D virtual reality, and 3D printing has highlighted a pressing need for these new methodologies to be considered together, both in terms of defining the state-of-the-art and for consideration of future directions. As a scholarly publication, the audience for the book includes students and researchers, as well as professionals working in various aspects of archaeology, heritage management, education, museums, and public policy. It will be of special interest to those working in the field of coastal cultural resource management and underwater archaeology but will also be of broader interest to anyone interested in archaeology and to those in other disciplines who are now engaging with 3D recording and visualization

    Faculty Publications & Presentations, 2007-2008

    Get PDF

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section
    corecore