39 research outputs found

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Neural-symbolic learning for knowledge base completion

    Get PDF
    A query answering task computes the prediction scores of ground queries inferred from a Knowledge Base (KB). Traditional symbolic-based methods solve this task using ‘exact’ provers. However, they are not very scalable and difficult to apply to current large KBs. Sub-symbolic methods have recently been proposed to address this problem. They require to be trained to learn the semantics of the symbolic representation and use it to make predictions about query answering. Such predictions may rely upon unknown rules over the given KB. Not all proposed sub-symbolic systems are capable of inducing rules from the KB; and even more challenging is the learning of rules that are human interpretable. Some approaches, e.g., those based on a Neural Theorem Prover (NTP), are able to address this problem but with limited scalability and expressivity of the rules that they can induce. We take inspiration from the NTP framework and propose three sub-symbolic architectures that solve the query answering task in a scalable manner while supporting the induction of more expressive rules. Two of these architectures, called Topical NTP (TNTP) and Topic-Subdomain NTP (TSNTP), address the scalability aspect. Trained representations of predicates and constants are clustered and the soft-unification of the backward chaining proof procedure that they use is controlled by these clusters. The third architecture, called Negation-as-Failure TSNTP (NAF TSNTP), addresses the expressivity of the induced rules by supporting the learning of rules with negation-as-failure. All these architectures make use of additional hyperparameters that encourage the learning of induced rules during training. Each architecture is evaluated over benchmark datasets with increased complexity in size of the KB, number of predicates and constants present in the KB, and level of incompleteness of the KB with respect to test sets. The evaluation measures the accuracy of query answering prediction and computational time. The former uses two key metrics, AUC_PR and HITS, adopted also by existing sub-symbolic systems that solve the same task, whereas the computational time is in terms of CPU training time. The evaluation performance of our systems is compared against that of existing state-of-the-art sub-symbolic systems, showing that our approaches are indeed in most cases more accurate in solving query answering tasks, whilst being more efficient in computational time. The increased accuracy in some tasks is specifically due to the learning of more expressive rules, thus demonstrating the importance of increased expressivity in rule induction.Open Acces

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Machine learning for managing structured and semi-structured data

    Get PDF
    As the digitalization of private, commercial, and public sectors advances rapidly, an increasing amount of data is becoming available. In order to gain insights or knowledge from these enormous amounts of raw data, a deep analysis is essential. The immense volume requires highly automated processes with minimal manual interaction. In recent years, machine learning methods have taken on a central role in this task. In addition to the individual data points, their interrelationships often play a decisive role, e.g. whether two patients are related to each other or whether they are treated by the same physician. Hence, relational learning is an important branch of research, which studies how to harness this explicitly available structural information between different data points. Recently, graph neural networks have gained importance. These can be considered an extension of convolutional neural networks from regular grids to general (irregular) graphs. Knowledge graphs play an essential role in representing facts about entities in a machine-readable way. While great efforts are made to store as many facts as possible in these graphs, they often remain incomplete, i.e., true facts are missing. Manual verification and expansion of the graphs is becoming increasingly difficult due to the large volume of data and must therefore be assisted or substituted by automated procedures which predict missing facts. The field of knowledge graph completion can be roughly divided into two categories: Link Prediction and Entity Alignment. In Link Prediction, machine learning models are trained to predict unknown facts between entities based on the known facts. Entity Alignment aims at identifying shared entities between graphs in order to link several such knowledge graphs based on some provided seed alignment pairs. In this thesis, we present important advances in the field of knowledge graph completion. For Entity Alignment, we show how to reduce the number of required seed alignments while maintaining performance by novel active learning techniques. We also discuss the power of textual features and show that graph-neural-network-based methods have difficulties with noisy alignment data. For Link Prediction, we demonstrate how to improve the prediction for unknown entities at training time by exploiting additional metadata on individual statements, often available in modern graphs. Supported with results from a large-scale experimental study, we present an analysis of the effect of individual components of machine learning models, e.g., the interaction function or loss criterion, on the task of link prediction. We also introduce a software library that simplifies the implementation and study of such components and makes them accessible to a wide research community, ranging from relational learning researchers to applied fields, such as life sciences. Finally, we propose a novel metric for evaluating ranking results, as used for both completion tasks. It allows for easier interpretation and comparison, especially in cases with different numbers of ranking candidates, as encountered in the de-facto standard evaluation protocols for both tasks.Mit der rasant fortschreitenden Digitalisierung des privaten, kommerziellen und öffentlichen Sektors werden immer grĂ¶ĂŸere Datenmengen verfĂŒgbar. Um aus diesen enormen Mengen an Rohdaten Erkenntnisse oder Wissen zu gewinnen, ist eine tiefgehende Analyse unerlĂ€sslich. Das immense Volumen erfordert hochautomatisierte Prozesse mit minimaler manueller Interaktion. In den letzten Jahren haben Methoden des maschinellen Lernens eine zentrale Rolle bei dieser Aufgabe eingenommen. Neben den einzelnen Datenpunkten spielen oft auch deren ZusammenhĂ€nge eine entscheidende Rolle, z.B. ob zwei Patienten miteinander verwandt sind oder ob sie vom selben Arzt behandelt werden. Daher ist das relationale Lernen ein wichtiger Forschungszweig, der untersucht, wie diese explizit verfĂŒgbaren strukturellen Informationen zwischen verschiedenen Datenpunkten nutzbar gemacht werden können. In letzter Zeit haben Graph Neural Networks an Bedeutung gewonnen. Diese können als eine Erweiterung von CNNs von regelmĂ€ĂŸigen Gittern auf allgemeine (unregelmĂ€ĂŸige) Graphen betrachtet werden. Wissensgraphen spielen eine wesentliche Rolle bei der Darstellung von Fakten ĂŒber EntitĂ€ten in maschinenlesbaren Form. Obwohl große Anstrengungen unternommen werden, so viele Fakten wie möglich in diesen Graphen zu speichern, bleiben sie oft unvollstĂ€ndig, d. h. es fehlen Fakten. Die manuelle ÜberprĂŒfung und Erweiterung der Graphen wird aufgrund der großen Datenmengen immer schwieriger und muss daher durch automatisierte Verfahren unterstĂŒtzt oder ersetzt werden, die fehlende Fakten vorhersagen. Das Gebiet der WissensgraphenvervollstĂ€ndigung lĂ€sst sich grob in zwei Kategorien einteilen: Link Prediction und Entity Alignment. Bei der Link Prediction werden maschinelle Lernmodelle trainiert, um unbekannte Fakten zwischen EntitĂ€ten auf der Grundlage der bekannten Fakten vorherzusagen. Entity Alignment zielt darauf ab, gemeinsame EntitĂ€ten zwischen Graphen zu identifizieren, um mehrere solcher Wissensgraphen auf der Grundlage einiger vorgegebener Paare zu verknĂŒpfen. In dieser Arbeit stellen wir wichtige Fortschritte auf dem Gebiet der VervollstĂ€ndigung von Wissensgraphen vor. FĂŒr das Entity Alignment zeigen wir, wie die Anzahl der benötigten Paare reduziert werden kann, wĂ€hrend die Leistung durch neuartige aktive Lerntechniken erhalten bleibt. Wir erörtern auch die LeistungsfĂ€higkeit von Textmerkmalen und zeigen, dass auf Graph-Neural-Networks basierende Methoden Schwierigkeiten mit verrauschten Paar-Daten haben. FĂŒr die Link Prediction demonstrieren wir, wie die Vorhersage fĂŒr unbekannte EntitĂ€ten zur Trainingszeit verbessert werden kann, indem zusĂ€tzliche Metadaten zu einzelnen Aussagen genutzt werden, die oft in modernen Graphen verfĂŒgbar sind. GestĂŒtzt auf Ergebnisse einer groß angelegten experimentellen Studie prĂ€sentieren wir eine Analyse der Auswirkungen einzelner Komponenten von Modellen des maschinellen Lernens, z. B. der Interaktionsfunktion oder des Verlustkriteriums, auf die Aufgabe der Link Prediction. Außerdem stellen wir eine Softwarebibliothek vor, die die Implementierung und Untersuchung solcher Komponenten vereinfacht und sie einer breiten Forschungsgemeinschaft zugĂ€nglich macht, die von Forschern im Bereich des relationalen Lernens bis hin zu angewandten Bereichen wie den Biowissenschaften reicht. Schließlich schlagen wir eine neuartige Metrik fĂŒr die Bewertung von Ranking-Ergebnissen vor, wie sie fĂŒr beide Aufgaben verwendet wird. Sie ermöglicht eine einfachere Interpretation und einen leichteren Vergleich, insbesondere in FĂ€llen mit einer unterschiedlichen Anzahl von Kandidaten, wie sie in den de-facto Standardbewertungsprotokollen fĂŒr beide Aufgaben vorkommen

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Online learning on the programmable dataplane

    Get PDF
    This thesis makes the case for managing computer networks with datadriven methods automated statistical inference and control based on measurement data and runtime observations—and argues for their tight integration with programmable dataplane hardware to make management decisions faster and from more precise data. Optimisation, defence, and measurement of networked infrastructure are each challenging tasks in their own right, which are currently dominated by the use of hand-crafted heuristic methods. These become harder to reason about and deploy as networks scale in rates and number of forwarding elements, but their design requires expert knowledge and care around unexpected protocol interactions. This makes tailored, per-deployment or -workload solutions infeasible to develop. Recent advances in machine learning offer capable function approximation and closed-loop control which suit many of these tasks. New, programmable dataplane hardware enables more agility in the network— runtime reprogrammability, precise traffic measurement, and low latency on-path processing. The synthesis of these two developments allows complex decisions to be made on previously unusable state, and made quicker by offloading inference to the network. To justify this argument, I advance the state of the art in data-driven defence of networks, novel dataplane-friendly online reinforcement learning algorithms, and in-network data reduction to allow classification of switchscale data. Each requires co-design aware of the network, and of the failure modes of systems and carried traffic. To make online learning possible in the dataplane, I use fixed-point arithmetic and modify classical (non-neural) approaches to take advantage of the SmartNIC compute model and make use of rich device local state. I show that data-driven solutions still require great care to correctly design, but with the right domain expertise they can improve on pathological cases in DDoS defence, such as protecting legitimate UDP traffic. In-network aggregation to histograms is shown to enable accurate classification from fine temporal effects, and allows hosts to scale such classification to far larger flow counts and traffic volume. Moving reinforcement learning to the dataplane is shown to offer substantial benefits to stateaction latency and online learning throughput versus host machines; allowing policies to react faster to fine-grained network events. The dataplane environment is key in making reactive online learning feasible—to port further algorithms and learnt functions, I collate and analyse the strengths of current and future hardware designs, as well as individual algorithms

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    On the role of Computational Logic in Data Science: representing, learning, reasoning, and explaining knowledge

    Get PDF
    In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum
    corecore