580 research outputs found

    Designing and Assessing Interactive Systems Using Task Models (2015)

    Get PDF
    International audienceThis two-part course takes a practical approach to introduce the principles, methods and tools in task modelling. Part 1: A non-technical introduction demonstrates that task models support successful design of interactive systems. Part 2: A more technical interactive hands-on exercise of how to "do it right", such as: How to go from task analysis to task models? How to assess (through analysis and simulation) that a task model is correct? How to identify complexity of user tasks

    A Framework for Computational Design and Adaptation of Extended Reality User Interfaces

    Full text link
    To facilitate high quality interaction during the regular use of computing systems, it is essential that the user interface (UI) deliver content and components in an appropriate manner. Although extended reality (XR) is emerging as a new computing platform, we still have a limited understanding of how best to design and present interactive content to users in such immersive environments. Adaptive UIs offer a promising approach for optimal presentation in XR as the user's environment, tasks, capabilities, and preferences vary under changing context. In this position paper, we present a design framework for adapting various characteristics of content presented in XR. We frame these as five considerations that need to be taken into account for adaptive XR UIs: What?, How Much?, Where?, How?, and When?. With this framework, we review literature on UI design and adaptation to reflect on approaches that have been adopted or developed in the past towards identifying current gaps and challenges, and opportunities for applying such approaches in XR. Using our framework, future work could identify and develop novel computational approaches for achieving successful adaptive user interfaces in such immersive environments.Comment: 5 pages, CHI 2023 Workshop on The Future of Computational Approaches for Understanding and Adapting User Interface

    PolySurface:a design approach for rapid prototyping of shape-changing displays using semi-solid surfaces

    Get PDF
    We present a design approach for rapid fabrication of high fidelity interactive shape-changing displays using bespoke semi-solid surfaces. This is achieved by segmenting virtual representations of the given data and mapping it to a dynamic physical polygonal surface. First, we establish the design and fabrication approach for generating semi-solid reconfigurable surfaces. Secondly, we demonstrate the generalizability of this approach by presenting design sessions using datasets provided by experts from a diverse range of domains. Thirdly, we evaluate user engagement with the prototype hardware systems that are built. We learned that all participants, all of whom had no previous interaction with shape-changing displays, were able to successfully design interactive hardware systems that physically represent data specific to their work. Finally, we reflect on the content generated to understand if our approach is effective at representing intended output based on a set of user defined functionality requirements

    Expanding modes of reflection in design futuring

    Get PDF
    Design futuring approaches, such as speculative design, design fiction and others, seek to (re)envision futures and explore alternatives. As design futuring becomes established in HCI design research, there is an opportunity to expand and develop these approaches. To that end, by reflecting on our own research and examining related work, we contribute five modes of reflection. These modes concern formgiving, temporality, researcher positionality, real-world engagement, and knowledge production. We illustrate the value of each mode through careful analysis of selected design exemplars and provide questions to interrogate the practice of design futuring. Each reflective mode offers productive resources for design practitioners and researchers to articulate their work, generate new directions for their work, and analyze their own and others’ work.

    Gapeau: Enhancing the Sense of Distance to Others with a Head-Mounted Sensor

    Get PDF
    Human perception lacks the capabilities to accurately assess distance. The recent Covid-19 pandemic outbreak rendered this ability particularly important. Augmenting our sense of distance can help maintain safe separation from others when required. To explore how systems can help users maintain physical distance, we designed, implemented and evaluated Gapeau - a head-mounted system for augmenting the sense of distance. Our system uses proximity sensors and thermal sensing to detect and measure the distance to other people. We conducted a validation protocol, an experiment, in which we compared different feedback modalities, and an in-the-wild study to evaluate Gapeau\u27s performance and suitability for use in social contexts. We found that our system enabled users to more accurately determine whether they were maintaining a safe distance from others. Vibration and auditory feedback were found most effective and usable. Gapeau was perceived as socially acceptable. Our work contributes insights for augmented sensing systems with social relevance

    PolySurface: a design approach for rapid prototyping of shape-changing displays using semi-solid surfaces

    Get PDF
    We present a design approach for rapid fabrication of high fidelity interactive shape-changing displays using bespoke semi-solid surfaces. This is achieved by segmenting virtual representations of the given data and mapping it to a dynamic physical polygonal surface. First, we establish the design and fabrication approach for generating semi-solid reconfigurable surfaces. Secondly, we demonstrate the generalizability of this approach by presenting design sessions using datasets provided by experts from a diverse range of domains. Thirdly, we evaluate user engagement with the prototype hardware systems that are built. We learned that all participants, all of whom had no previous interaction with shape-changing displays, were able to successfully design interactive hardware systems that physically represent data specific to their work. Finally, we reflect on the content generated to understand if our approach is effective at representing intended output based on a set of user defined functionality requirements
    • 

    corecore